RESUMO
Although Platinum (Pt)-based alloys have garnered significant interest within the realm of direct methanol fuel cells (DMFCs), there still exists a notable dearth in the exploration of the catalytic behavior of the liquid fuels on well-defined active sites and unavoidable Pt poisoning because of the adsorbed CO species (COads). Here, we propose an electronegativity-induced electronic redistribution strategy to optimize the adsorption of crucial intermediates for the methanol oxidation reaction (MOR) by introducing the Co element to form the PtCo alloys. The optimal PtCo hollow nanospheres (HNSs) exhibit excellent high-quality activity of 3.27 A mgPt-1, which is 11.6 times and 13.1 times higher than that of Pt/C and pure Pt, respectively. The in-situ Fourier transform infrared reflection spectroscopy validates that electron redistribution could weak CO adsorption, and subsequently decrease the CO poisoning adjacent the Pt active sites. Theoretical simulations result show that the introduction of Co optimize surface electronic structure and reduce the d-band center of Pt, thus optimized the adsorption behavior of COads. This study not only employs a straightforward method for the preparation of Pt-based alloys but also delineates a pathway toward designing advanced active sites for MOR via electronegativity-induced electronic redistribution.
RESUMO
Active and durable electrocatalysts are essential for commercializing direct methanol fuel cells. However, Pt-based catalysts, extensively utilized in the methanol oxidation reaction (MOR), are suffered from resource scarcity and CO poisoning, which degrade MOR activity severely. Herein, Pt1Rux bimetallic catalysts were synthesized by confining Pt1Rux alloys within the shells of mesoporous carbon hollow spheres (MCHS) via a vacuum-assisted impregnation method (Pt1Rux@MCHS). The confinement effect induced by mesoporous carbon hollow spheres resulted in a robust structure of Pt1Ru3@MCHS with an ultrafine dispersion of alloy nanoparticles. The experimental and theoretical results confirmed that the boosting electrocatalytic activity and stability of the MOR over Pt1Ru3@MCHS were contributed to the regulated electronic structure as well as the superior CO tolerance of atomic Pt site caused by the electronic interaction between single Pt atoms and Ru nanoparticles. This strategy is versatile for the rational design of Pt-based bimetallic catalysts and has a positive impact on MOR performance.
RESUMO
Among renewable energy technologies, particular attention is paid to electrochemically transforming methanol into valuable formate and storing energy into supercapacitors. In this study, we detailed a simple colloidal-based protocol for synthesizing a series of alloy nanoparticles with tuned Ni/Co atomic ratios, thereby optimizing their electrochemical performance. With the addition of 1 M methanol in 1 M KOH, the optimized composition was able to electrochemically produce formate at 0.149 mmol cm-2 h-1 with a Faradaic efficiency up to 95.1% at 0.6 V versus Hg/HgO within a 22-hour testing period. In 1 M KOH solution without methanol, the supercapacitive performance was achieved at a specific capacitance of over 1500 F g-1, and outstanding cycling stability with only approximately 20% decay after continuous 10000 charging-discharging cycles. These results underscore that the prepared Ni-Co alloy nanoparticles serve as multi-functional electrodes for electrochemical energy conversion and storage, particularly in the MOR and supercapacitors applications.
RESUMO
Metal-organic frameworks (MOFs) have been considered as promising hosts for immobilizing ultrafine metal nanoparticles (MNPs) due to their high surface area and porosity. However, electrochemical applications of such emerging composites are severely limited by the poor electrical conductivity and large size of the MOFs. Herein, we report the general synthesis of incorporating various MNPs into a conjugated MOF ultrathin nanosheet (Cu-TCPP UNS) matrix, which not only prevents agglomeration and restricts the growth of MNPs but also benefits the exposure of active sites and the transport of electrons. Specifically, the obtained PtCu@Cu-TCPP UNSs exhibited nearly two times higher mass activity for the methanol oxidation reaction (MOR) than the commercial Pt/C catalyst. Mechanistic studies reveal that the strong interaction between MNPs and Cu-TCPP promotes the oxidation of the CO intermediate. Moreover, the PtCu@Cu-TCPP UNSs can be employed as bifunctional electrocatalysts to couple MOR with the hydrogen evolution reaction for highly efficient hydrogen production.
RESUMO
High-entropy alloys (HEAs) are promising materials for electrochemical energy applications due to their excellent catalytic performance and durability. However, the controlled synthesis of HEAs with a well-defined structure and a uniform composition distribution remains a challenge. Herein, a soft template-assisted electrodeposition technique is used to fabricate a mesoporous HEA (m-HEA) film with a uniform composition distribution of Pt, Pd, Rh, Ru, and Cu, providing a suitable platform for investigating structure-performance relationships. Electrochemical deposition enables the uniform nucleation and grain growth of m-HEA, which can be deposited onto many conductive substrates. The m-HEA film exhibits an enhanced mass activity of 4.2 A mgPt-1 toward methanol oxidation reaction (MOR), which is 7.2-fold and 35-fold higher than a mesoporous Pt film and commercial Pt black, respectively. Experimental characterization indicates that structural defects and a low work function of the m-HEA film offer sufficient active sites and fast electron-transfer kinetics. Furthermore, theoretical calculations demonstrate that the variety of favorable adsorption sites on multimetallic elements of HEA reduces the barriers for dehydration pathways and *CO species removal, ensuring optimal performance for complex MOR reactions. This work provides an effective approach to designing a variety of HEA catalysts with well-controlled porous structures for targeted electrocatalytic applications.
RESUMO
Developing novel catalysts with high activity and high stability for the methanol oxidation reaction (MOR) is of great importance for the ever-broader applications of methanol fuel cells. Herein, we present a facile technique for synthesizing Au10Pt1@MnO2 catalysts using a wet chemical method and investigate their catalytic performance for the MOR. Notably, the Au10Pt1@MnO2-M composite demonstrated a significantly high peak mass activity of 15.52 A mg(Pt)-1, which is 35.3, 57.5, and 21.9 times greater than those of the Pt/C (0.44 A mg(Pt)-1), Pd/C (0.27 A mg(Pt)-1), and Au10Pt1 (0.71 A mg(Pt)-1) catalysts, respectively. Comparative analysis with commercial Pt/C and Pd/C catalysts, as well as Au10Pt1 HSNRs, revealed that the Au10Pt1@MnO2-M composite exhibited the lowest initial potential, the highest peak current density, and superior CO anti-poisoning capability. The results demonstrate that the introduction of MnO2 nanosheets, with excellent oxidation capability, not only significantly increases the reactive sites, but also promotes the reaction kinetics of the catalyst. Furthermore, the high surface area of the MnO2 nanosheets facilitates charge transfer and induces modifications in the electronic structure of the composite. This research provides a straightforward and effective strategy for the design of efficient electrocatalytic nanostructures for MOR applications.
RESUMO
The ligand effect in alloy catalysts is one of the decisive parameters of the catalytic performance. However, the strong interrelation between the ligand effect and the geometric effect of the active atom and its neighbors as well as the systematic alteration of the microenvironment of the active site makes the active mechanism unclear. Herein, Pt3Tm, Pt3Yb, and Pt3Lu with a cubic crystal system (Pm-3m) were selected. With the difference of Pt-Pt interatomic distance within 0.02 Å, we minimize the geometric effect to realize the disentanglement of the system. Through precise characterization, due to the low electronegativity of Ln (Ln = Tm, Yb, and Lu) and the ligand effect in the alloy, the electronic structure of Pt is continuously optimized, which improves the electrochemical methanol oxidation reaction (MOR) performance. The Ln electronegativity has a linear relationship with the MOR performance, and Pt3Yb/C achieves a high mass activity of up to 11.61 A mgPt-1, which is the highest value reported so far in Pt-based electrocatalysts. The results obtained in this study provide fundamental insights into the mechanism of ligand effects on the enhancement of electrochemical activity in rare-earth nanoalloys.
RESUMO
Electrocatalytic water splitting is a crucial strategy for advancing hydrogen energy and addressing the global energy crisis. Despite its significance, the need for a straightforward and swift method to synthesize electrocatalysts with exceptional performance remains pressing. In this study, we demonstrate a novel approach for the preparation of multimetal-based electrocatalysts in a continuous flow reactor, enabling the quick synthesis of a large number of products through a streamlined process. The resultant NiFe-LDH comprises nanoflakes with a high specific surface area and requires only 255.4 mV overpotential to achieve a current density of 10 mA·cm-2 in 1 M KOH, surpassing samples fabricated by conventional hydrothermal methods. Our method can also be applied to craft a spectrum of other multimetal-based electrocatalysts, including CoFe-LDH, CoAl-LDH, NiMn-LDH, and NiCoFe-LDH. Additionally, the NiFe-LDH electrocatalyst is further applied to anodic methanol electrooxidation coupled with cathodic hydrogen evolution. Moreover, the simplicity and generality of our fabrication method render it applicable for the facile preparation of various multimetal-based electrocatalysts, offering a scalable solution to the quest for high-performance catalysts in advancing sustainable energy technologies.
RESUMO
Platinum-Ruthenium (PtRu) bimetallic nanoparticles are promising catalysts for methanol oxidation reaction (MOR) required by direct methanol fuel cells. However, existing catalyst synthesis methods have difficulty controlling their composition and structures. Here, a direct Joule heating method to yield highly active and stable PtRu catalysts for MOR is shown. The optimized Joule heating condition at 1000 °C over 50 microseconds produces uniform PtRu nanoparticles (6.32 wt.% Pt and 2.97 wt% Ru) with an average size of 2.0 ± 0.5 nanometers supported on carbon black substrates. They have a large electrochemically active surface area (ECSA) of 239 m2 g-1 and a high ECSA normalized specific activity of 0.295 mA cm-2. They demonstrate a peak mass activity of 705.9 mA mgPt -1 for MOR, 2.8 times that of commercial 20 wt.% platinum/carbon catalysts, and much superior to PtRu catalysts obtained by standard hydrothermal synthesis. Theoretical calculation results indicate that the superior catalytic activity can be attributed to modified Pt sites in PtRu nanoparticles, enabling strong methanol adsorption and weak carbon monoxide binding. Further, the PtRu catalyst demonstrates excellent stability in two-electrode methanol fuel cell tests with 85.3% current density retention and minimum Pt surface oxidation after 24 h.
RESUMO
Facilitating the selective electrochemical oxidation of methanol into value-added formate is essential for electrochemical refining. Here we propose a high-dimensional Nb2O5 on Ni foam (Nb2O5-HD@NF) composite as anode for methanol oxidation reaction (MOR) for efficient production of formate. In an electrolyte containing 3 M methanol aqueous solution, the Nb2O5-HD@NF anode requires only 240 mV overpotential to deliver an industrial-level current density of 100 mA cm-2 with a formate Faraday efficiency of 100%. In situ Raman and electrochemical kinetic analyses reveal that the origin of the excellent activity in 3 M methanol electrolyte can be ascribed to the NbO6 octahedra as active sites and the Lewis acid sites on the surface of Nb2O5-HD. This work may pave a way for the design of non-noble metal electrocatalysts with surface acidity engineering for the effective electrocatalytic upgrading of biomass molecules.
RESUMO
The direct methanol fuel cell (DMFC) represents a highly promising alternative power source for small electronics and automobiles due to its low operating temperatures, high efficiency, and energy density. The methanol oxidation process (MOR) constitutes a fundamental chemical reaction occurring at the positive electrode of a DMFC. Pt-based materials serve as widely utilized MOR electrocatalysts in DMFCs. Nevertheless, various challenges, such as sluggish reaction rates, high production costs primarily attributed to the expensive Pt-based catalyst, and the adverse effects of CO poisoning on the Pt catalysts, hinder the commercialization of DMFCs. Consequently, endeavors to identify an alternative catalyst to Pt-based catalysts that mitigate these drawbacks represent a critical focal point of DMFC research. In pursuit of this objective, researchers have developed diverse classes of MOR electrocatalysts, encompassing those derived from noble and non-noble metals. This review paper delves into the fundamental concept of MOR and its operational mechanisms, as well as the latest advancements in electrocatalysts derived from noble and non-noble metals, such as single-atom and molecule catalysts. Moreover, a comprehensive analysis of the constraints and prospects of MOR electrocatalysts, encompassing those based on noble metals and those based on non-noble metals, has been undertaken.
RESUMO
The catalytic activity of platinum for CO oxidation depends on the interaction of electron donation and back-donation at the platinum center. Here we demonstrate that the platinum bromine nanoparticles with electron-rich properties on bromine bonded with sp-C in graphdiyne (PtBr NPs/Br-GDY), which is formed by bromine ligand and constitutes an electrocatalyst with a high CO-resistant for methanol oxidation reaction (MOR). The catalyst showed peak mass activity for MOR as high as 10.4â A mgPt -1, which is 20.8â times higher than the 20 % Pt/C. The catalyst also showed robust long-term stability with slight current density decay after 100â hours at 35â mA cm-2. Structural characterization, experimental, and theoretical studies show that the electron donation from bromine makes the surface of platinum catalysts highly electron-rich, and can strengthen the adsorption of CO as well as enhance π back-donation of Pt to weaken the C-O bond to facilitate CO electrooxidation and enhance catalytic performance during MOR. The results highlight the importance of electron-rich structure among active sites in Pt-halogen catalysts and provide detailed insights into the new mechanism of CO electrooxidation to overcome CO poisoning at the Pt center on an orbital level.
RESUMO
Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO2 nanocube (Pt ALs/CeO2) with maximum electronic metal-support interaction for enhancing the coupling selectively. The small-size monolayer material achieves an optimal geometrical distance between edge Pt-O-Ce sites and *OH absorbed on CeO2, which well restrains the dehydrogenation of *CHO, resulting in the non-CO pathway. Meanwhile, the *CHO/*CO intermediate generated at inner Pt-O-Ce sites can migrate to edge, inducing the subsequent coupling reaction, thus avoiding poisoning while promoting reaction efficiency. Consequently, Pt ALs/CeO2 exhibits exceptionally catalytic stability with negligible degradation even under 1000â s pure CO poisoning operation and high mass activity (14.87â A/mgPt), enabling it one of the best-performing alkali-stable MOR catalysts.
RESUMO
The energy consumption of up to 90 % of the total power input in the anodic oxygen evolution reaction (OER) slows down the implementation of electrochemical CO2 reduction reaction (CO2RR) to generate valuable chemicals. Herein, we present an alternative strategy that utilizes methanol oxidation reaction (MOR) to replace OER. The iron single atom anchored on nitrogen-doped carbon support (Fe-N-C) use as the cathode catalyst (CO2RR), low-loading platinum supported on the composites of tungsten phosphide and multiwalled carbon nanotube (Pt-WP/MWCNT) use as the anode catalyst (MOR). Our results show that the Fe-N-C exhibits a Faradaic selectivity as high as 94.93 % towards CO2RR to CO, and Pt-WP/MWCNT exhibits a peak mass activity of 544.24 mA mg-1Pt, which is 5.58 times greater than that of PtC (97.50 mA mg-1Pt). The well-established MOR||CO2RR reduces the electricity consumption up to 52.4 % compared to conventional OER||CO2RR. Moreover, a CO2 emission analysis shows that this strategy not only saves energy but also achieves carbon neutrality without changing the existing power grid structure. Our findings have crucial implications for advancing CO2 utilization and lay the foundation for developing more efficient and sustainable technologies to address the rising atmospheric CO2 levels.
RESUMO
Understanding the operando defect-tuning performance of catalysts is critical to establish an accurate structure-activity relationship of a catalyst. Here, with the tool of single-molecule super-resolution fluorescence microscopy, by imaging intermediate CO formation/oxidation during the methanol oxidation reaction process on individual defective Pt nanotubes, we reveal that the fresh Pt ends with more defects are more active and anti-CO poisoning than fresh center areas with less defects, while such difference could be reversed after catalysis-induced step-by-step creation of more defects on the Pt surface. Further experimental results reveal an operando volcano relationship between the catalytic performance (activity and anti-CO ability) and the fine-tuned defect density. Systematic DFT calculations indicate that such an operando volcano relationship could be attributed to the defect-dependent transition state free energy and the accelerated surface reconstructing of defects or Pt-atom moving driven by the adsorption of the CO intermediate. These insights deepen our understanding to the operando defect-driven catalysis at single-molecule and subparticle level, which is able to help the design of highly efficient defect-based catalysts.
RESUMO
The anodic methanol oxidation reaction (MOR) plays a crucial role in coupling with the cathodic hydrogen evolution reaction (HER) and enables the sustainable production of the high-valued formate. Nickel-based hydroxide (Ni(OH)2) as MOR electrocatalyst has attracted enormous attention. However, the key factor determining the intrinsic catalytic activity remains unknown, which significantly hinders the further development of Ni(OH)2 electrocatalyst. Here, we found that the d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ electronic state within antibonding bands plays a decisive role in the whole MOR process. The onset potential depends on the deprotonation ability (Ni2+ to Ni3+), which was closely related to the band center of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital. The closer of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital to the Fermi level showed the stronger the deprotonation ability. Meanwhile, in the high potential region, the broadening of d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital would facilitate the electron transfer from methanol to catalysts (Ni3+ to Ni2+), further enhancing the catalytic properties. Our work for the first time clarifies the intrinsic relationship between d x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ electronic state and the MOR activities, which adds a new layer of understanding to the methanol electrooxidation research scene.
RESUMO
The potential of metal oxides in electrochemical energy storage encouraged our research team to synthesize molybdenum oxide/tungsten oxide nanocomposites (MoO3/WO3) and their hybrid with reduced graphene oxide (rGO), in the form of MoO3/WO3/rGO as a substrate with relatively good electrical conductivity and suitable electrochemical active surface. In this context, we presented the electrochemical behavior of these nanocomposites as an electrode for supercapacitors and as a catalyst in the oxidation process of methanol/ethanol. Our engineered samples were characterized by X-ray diffraction pattern and scanning electron microscopy. As a result, MoO3/WO3 and MoO3/WO3/rGO indicated specific capacitances of 452 and 583 F/g and stability of 88.9% and 92.6% after 2000 consecutive GCD cycles, respectively. Also, MoO3/WO3 and MoO3/WO3/rGO nanocatalysts showed oxidation current densities of 117 and 170 mA/cm2 at scan rate of 50 mV/s, and stability of 71 and 89%, respectively in chronoamperometry analysis, in the MOR process. Interestingly, in the ethanol oxidation process, corresponding oxidation current densities of 42 and 106 mA/cm2 and stability values of 70 and 82% were achieved. MoO3/WO3 and MoO3/WO3/rGO can be attractive options paving the way for prospective alcohol-based fuel cells.
RESUMO
Methanol oxidation plays a central role to implement sustainable energy economy, which is restricted by the sluggish reaction kinetics due to the multi-electron transfer process accompanied by numerous sequential intermediate. In this study, an efficient cascade methanol oxidation reaction is catalyzed by single-Ir-atom catalyst at ultra-low potential (<0.1â V) with the promotion of the thermal and electrochemical integration in a high temperature polymer electrolyte membrane electrolyzer. At the elevated temperature, the electron deficient Ir site with higher methanol affinity could spontaneous catalyze the CH3OH dehydrogenation to CO under the voltage, then the generated CO and H2 was electrochemically oxidized to CO2 and proton. However, the methanol cannot thermally decompose with the voltage absence, which confirm the indispensable of the coupling of thermal and electrochemical integration for the methanol oxidation. By assembling the methanol oxidation reaction with hydrogen evolution reaction with single-Ir-atom catalysts in the anode chamber, a max hydrogen production rate reaches 18â mol gIr -1 h-1, which is much greater than that of Ir nanoparticles and commercial Pt/C. This study also demonstrated the electrochemical methanol oxidation activity of the single atom catalysts, which broadens the renewable energy devices and the catalyst design by an integration concept.
RESUMO
PtRu alloys have been recognized as the state-of-the-art catalysts for the methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). However, their applications in DMFCs are still less efficient in terms of both catalytic activity and durability. Rare earth (RE) metals have been recognized as attractive elements to tune the catalytic activity, while it is still a world-class challenge to synthesize well-dispersed Pt-RE alloys. Herein, we developed a novel hydrogen-assisted magnesiothermic reduction strategy to prepare a highly dispersed carbon-supported lutetium-doped PtRu catalyst with ultrafine nanoclusters and atomically dispersed Ru sites. The PtRuLu catalyst shows an outstanding high electrochemical surface area (ECSA) of 239.0 m2 gPt-1 and delivers an optimized MOR mass activity and specific activity of 632.5 mA mgPt-1 and 26 A cmPt-2 at 0.4 V vs saturated calomel electrode (SCE), which are 3.6 and 3.5 times of commercial PtRu-JM and an order higher than PtLu, respectively. These novel catalysts have been demonstrated in a high-temperature direct methanol fuel cell running in a temperature range of 180-240 °C, achieving a maximum power density of 314.3 mW cm-2. The AC-STEM imaging, in situ ATR-IR spectroscopy, and DFT calculations disclose that the high performance is resulted from the highly dispersed PtRuLu nanoclusters and the synergistic effect of the atomically dispersed Ru sites with PtRuLu nanoclusters, which significantly reduces the CO* intermediates coverage due to the promoted water activation to form the OH* to facilitate the CO* removal.
RESUMO
The higher amount of Pt usage and its poisoning in methanol oxidation reaction in acidic media is a major setback for methanol fuel cells. Herein, a promising dual application high-performance electrocatalyst has been developed for hydrogen evolution and methanol oxidation. A low Pt-content nanoalloy co-doped with Cu, Mn, and P is synthesized using a modified solvothermal process. Initially, ultrasmall ≈2.9 nm PtCuMnP nanoalloy is prepared on N-doped graphene-oxide support and subsequently, it is characterized using several analytical techniques and examined through electrochemical tests. Electrochemical results show that PtCuMnP/N-rGO has a low overpotential of 6.5 mV at 10 mA cm-2 in 0.3 m H2SO4 and high mass activity for the hydrogen evolution reaction. For the methanol oxidation reaction, the PtCuMnP/N-rGO electrocatalyst exhibits robust performance. The mass activity of PtCuMnP/N-rGO is 6.790 mA mg-1 Pt, which is 7.43 times higher than that of commercial Pt/C (20% Pt). Moreover, in the chronoamperometry test, PtCuMnP/N-rGO shows exceptionally good stability and retains 72% of the initial current density even after 20,000 cycles. Furthermore, the PtCuMnP/N-rGO electrocatalyst exhibits outstanding performance for hydrogen evolution and methanol oxidation along with excellent anti-poisoning ability. Hence, the developed bifunctional electrocatalyst can be used efficiently for hydrogen evolution and methanol oxidation.