RESUMO
Potato (Solanum tuberosum L.) is nowadays an important component of diversified cropping systems due to its adaptability, yielding capacity, and nutrition contribution. Breeding programs aiming at raising potato's nutritional value have mainly focused on the accumulation in potato tubers of health-promoting phytochemicals such as anthocyanins. In different plant species, increased amounts of anthocyanins in vegetative tissues have been associated with enhanced tolerance to abiotic and biotic stresses that challenge agrifood systems in the current context of global climate change. In the present study, we aimed at gaining insight into the effect of anthocyanin accumulation on the potato plants response to drought stress using three different potato genotypes with differential canopy and tuber pigmentation: the purple fleshed commercial variety Bleuet; the red fleshed breeding clone DAR170; and the non-pigmented commercial variety Monalisa. The varieties Bleuet and DAR170 exhibiting higher anthocyanin content in vegetative tissues than the Monalisa variety showed a remarkable inhibition of stem growth development under drought stress treatment suggestive of an anthocyanin-mediated physiological shift from growth to resilience as a mechanism of stress tolerance. The results of the expression analysis of stu-miR156a and its target StSPL9 gene in the potato plants with different anthocyanin content, as well as their change in response to drought stress support the participation of the conserved miR156-SPL9 regulatory module in coordinating potato plants development and plant responses to drought stress, involving precise fine-tuning of anthocyanin biosynthesis.
RESUMO
MicroRNA (miRNA) is a type of endogenous non-coding small RNA, which is abundant in living organisms. miRNAs play an important role in regulating gene expression and myriad cellular processes by binding to target messenger RNAs through complementary base pairing, and cross-species regulation mammalian cells by plant-derived xeno-miRNAs has been described. Here, we examined the miRNA species in two alfalfa (Medicago sativa, lucerne) cultivars commonly grown in Ningxia, China: cv. Zhongmu 1 and cv. Xinyan 52. Both cultivars have good salt and drought resistance. We found that the miRNA profiles were similar between the cultivars, with a slightly higher number of miRNAs present in the newer cv. Xinyan 52, which may contribute to its improved salt and drought tolerance. miRNAs were stable during drying, and some miRNAs were increased in dry versus fresh alfalfa, suggesting some miRNAs may be upregulated during drying. Alfalfa-derived miRNAs could be detected in exosomes from serum and whey collected from dairy cows, confirming the ability of the exogenous miRNAs (xeno-miRNAs) to enter the circulation and reach the mammary epithelium. In vitro studies confirmed that overexpression of mtr-miR156a could downregulate expression of Phosphatase 2 Regulatory Subunit B'gamma ( PPP2R5D) and Phosphoinositide-3-kinase Regulatory Subunit 2 (PIK3R2). Overexpression of mtr-miR156a also modulated PI3K-AKT-mTOR signaling as well as the casein content of milk produced by bovine mammary epithelial cells. Based on the known roles of PPP2R5D and PIK3R2 in regulating the PI3K-AKT-mTOR pathway as well as the effect of PI3K-AKT-mTOR on milk protein content, our findings implicate alfalfa-derived miR156a as a new cross-species regulator of milk quality in dairy cows.
Assuntos
Exossomos , Medicago sativa , MicroRNAs , Leite , Animais , Bovinos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Leite/química , Feminino , Exossomos/metabolismo , Exossomos/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Proteínas do Leite/metabolismo , Proteínas do Leite/genética , Células Epiteliais/metabolismo , Transdução de SinaisRESUMO
The embryogenic transition of plant somatic cells to produce somatic embryos requires extensive reprogramming of the cell transcriptome. The prominent role of transcription factors (TFs) and miRNAs in controlling somatic embryogenesis (SE) induction in plants was documented. The profiling of MIRNA expression in the embryogenic culture of Arabidopsis implied the contribution of the miR156 and miR169 to the embryogenic induction. In the present study, the function of miR156 and miR169 and the candidate targets, SPL and NF-YA genes, were investigated in Arabidopsis SE. The results showed that misexpression of MIRNA156 and candidate SPL target genes (SPL2, 3, 4, 5, 9, 10, 11, 13, 15) negatively affected the embryogenic potential of transgenic explants, suggesting that specific fine-tuning of the miR156 and target genes expression levels seems essential for efficient SE induction. The results revealed that SPL11 under the control of miR156 might contribute to SE induction by regulating the master regulators of SE, the LEC (LEAFY COTYLEDON) genes (LEC1, LEC2, FUS3). Moreover, the role of miR169 and its candidate NF-YA targets in SE induction was demonstrated. The results showed that several miR169 targets, including NF-YA1, 3, 5, 8, and 10, positively regulated SE. We found, that miR169 via NF-YA5 seems to modulate the expression of a master SE regulator LEC1/NF-YA and other auxin-related genes: YUCCA (YUC4, 10) and PIN1 in SE induction. The study provided new insights into miR156-SPL and miR169-NF-YA functions in the auxin-related and LEC-controlled regulatory network of SE.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , MicroRNAs , Fatores de Transcrição , MicroRNAs/genética , MicroRNAs/metabolismo , Arabidopsis/genética , Arabidopsis/embriologia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas de Embriogênese Somática de Plantas , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Plantas Geneticamente Modificadas/genética , Transdução de Sinais/genética , Proteínas Nucleares , Proteínas Repressoras , Proteínas Estimuladoras de Ligação a CCAATRESUMO
Achieving ideal plant architecture is of utmost importance for plant improvement to meet the demands of ever-increasing population. The wish list of ideal plant architecture traits varies with respect to its utilization and environmental conditions. Late seed development in woody plants poses difficulties for their propagation, and an increase in regeneration capacity can overcome this problem. The transition of a plant through sequential developmental stages e.g., embryonic, juvenile, and maturity is a well-orchestrated molecular and physiological process. The manipulation in the timing of phase transition to achieve ideal plant traits and regulation of metabolic partitioning will unlock new plant potential. Previous studies demonstrate that micro RNA156 (miR156) impairs the expression of its downstream genes to resist the juvenile-adult-reproductive phase transition to prolonged juvenility. The phenomenon behind prolonged juvenility is the maintenance of stem cell integrity and regeneration is an outcome of re-establishment of the stem cell niche. The previously reported vital and diverse functions of miR156 make it a more important case of study to explore its functions and possible ways to use it in molecular breeding. In this review, we proposed how genetic manipulation of miR156 can be used to reshape plant development phase transition and achieve ideal plant architecture. We have summarized recent studies on miR156 to describe its functional pattern and networking with up and down-stream molecular factors at each stage of the plant developmental life cycle. In addition, we have highlighted unaddressed questions, provided insights and devised molecular pathways that will help researchers to design their future studies.
Assuntos
MicroRNAs , Desenvolvimento Vegetal , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Vegetal/genética , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genéticaRESUMO
Nitrogen (N) is essential for sugar beet (Beta vulgaris L.), a highly N-demanding sugar crop. This study investigated the morphological, subcellular, and microRNA-regulated responses of sugar beet roots to low N (LN) stress (0.5 mmol/L N) to better understand the N perception, uptake, and utilization in this species. The results showed that LN led to decreased dry weight of roots, N accumulation, and N dry matter production efficiency, along with damage to cell walls and membranes and a reduction in organelle numbers (particularly mitochondria). Meanwhile, there was an increase in root length (7.2%) and branch numbers (29.2%) and a decrease in root surface area (6.14%) and root volume (6.23%) in sugar beet after 7 d of LN exposure compared to the control (5 mmol/L N). Transcriptomics analysis was confirmed by qRT-PCR for 6 randomly selected microRNAs, and we identified 22 differentially expressed microRNAs (DEMs) in beet root under LN treatment. They were primarily enriched in functions related to binding (1125), ion binding (641), intracellular (437) and intracellular parts (428), and organelles (350) and associated with starch and sucrose metabolism, tyrosine metabolism, pyrimidine metabolism, amino sugar and nucleotide sugar metabolism, and isoquinoline alkaloid biosynthesis, as indicated by the GO and KEGG analyses. Among them, the upregulated miR156a, with conserved sequences, was identified as a key DEM that potentially targets and regulates squamosa promoter-binding-like proteins (SPLs, 104889216 and 104897537) through the microRNA-mRNA network. Overexpression of miR156a (MIR) promoted root growth in transgenic Arabidopsis, increasing the length, surface area, and volume. In contrast, silencing miR156a (STTM) had the opposite effect. Notably, the fresh root weight decreased by 45.6% in STTM lines, while it increased by 27.4% in MIR lines, compared to the wild type (WT). It can be inferred that microRNAs, especially miR156, play crucial roles in sugar beet root's development and acclimation to LN conditions. They likely facilitate active responses to N deficiency through network regulation, enabling beet roots to take up nutrients from the environment and sustain their vital life processes.
Assuntos
Beta vulgaris , Regulação da Expressão Gênica de Plantas , MicroRNAs , Nitrogênio , Raízes de Plantas , Beta vulgaris/genética , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Nitrogênio/deficiência , Aclimatação/genética , Perfilação da Expressão GênicaRESUMO
Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.
Assuntos
Cucumis sativus , Citocininas , Regulação da Expressão Gênica de Plantas , MicroRNAs , Cucumis sativus/genética , Cucumis sativus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Citocininas/metabolismo , Frutas/genética , Frutas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Compostos de Fenilureia/farmacologia , PiridinasRESUMO
CO2 levels are known to have an impact on plant development and physiology. In the current study, we have investigated the effect of elevated CO2 on flowering and its regulation through miRNA mediated sugar signaling. We also unraveled small RNA transcriptome of pigeonpea under ambient and elevated CO2 conditions and predicted the targets for crucial miRNAs through computational methods. The results have shown that the delayed flowering in pigeonpea under elevated CO2 was due to an imbalance in C:N stoichiometry and differential expression pattern of aging pathway genes, including SQUAMOSA PROMOTER BINDING PROTEIN-LIKE. Furthermore, qRT PCR analysis has revealed the role of miR156 and miR172 in mediating trehalose-6-phosphate dependent flowering regulation. The current study is crucial in understanding the responses of flowering patterns in a legume crop to elevated CO2 which showed a significant impact on its final yields. Also, these findings are crucial in devising effective crop improvement strategies for developing climate resilient crops, including pigeonpea. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01434-9.
RESUMO
Squamosa Promoter Binding Protein-Like (SPL) plays a crucial role in regulating plant development and combating stress, yet its mechanism in regulating resistance to Cd toxicity remains unclear. In this study, we cloned a nuclear-localized transcription factor, NtSPL4a, from the tobacco cultivar TN90. Transient co-expression results showed that miR156 significantly reduced the expression of NtSPL4a by binding to the 3'-UTR of its transcript. We obtained transgenic tobacco overexpressing NtSPL4a (including the 3'-UTR) and NtSPL4aΔ (lacking the 3'-UTR) through Agrobacterium-mediated genetic transformation. Compared to the wild type (WT), overexpression of NtSPL4a/NtSPL4aΔ shortened the flowering time and exhibited a more developed root system. The transgenic tobacco showed significantly reduced Cd content, being 85.1% (OE-NtSPL4a) and 46.7% (OE-NtSPL4aΔ) of WT, respectively. Moreover, the upregulation of NtSPL4a affected the mineral nutrient homeostasis in transgenic tobacco. Additionally, overexpression of NtSPL4a/NtSPL4aΔ effectively alleviated leaf chlorosis and oxidative stress induced by Cd toxicity. One possible reason is that the overexpression of NtSPL4a/NtSPL4aΔ can effectively promote the accumulation of non-enzymatic antioxidants. A comparative transcriptomic analysis was performed between transgenic tobacco and WT to further unravel the global impacts brought by NtSPL4a. The tobacco overexpressing NtSPL4a had 183 differentially expressed genes (77 upregulated, 106 downregulated), while the tobacco overexpressing NtSPL4aΔ had 594 differentially expressed genes (244 upregulated, 350 downregulated) compared to WT. These differentially expressed genes mainly included transcription factors, metal transport proteins, flavonoid biosynthesis pathway genes, and plant stress-related genes. Our study provides new insights into the role of the transcript factor SPL in regulating Cd tolerance.
Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Cádmio/toxicidade , Cádmio/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
SQUAMOSA promoter binding-like proteins (SPLs) are important transcription factors that influence growth phase transition and reproduction in plants. SPLs are targeted by miR156 but the SPL/miR156 module is completely unknown in oat. We identified 28 oat SPL genes (AsSPLs) distributed across all 21 oat chromosomes except for 4C and 6D. The oat- SPL gene family represented six of eight SPL phylogenetic groups, with no AsSPLs in groups 3 and 7. A novel oat miR156 (AsmiR156) family with 21 precursors divided into 7 groups was characterized. A total of 16 AsSPLs were found to be targeted by AsmiR156. Intriguingly, AsSPL3s showed high transcript abundance during early inflorescence (GS-54), as compared to the lower abundance of AsmiR156, indicating their role in reproductive development. Unravelling the SPL/miR156 regulatory hub and alterations in expression patterns of AsSPLs could provide an essential toolbox for genetic improvement in the cultivated oat.
Assuntos
Avena , Regulação da Expressão Gênica de Plantas , MicroRNAs , Proteínas de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Avena/genética , Avena/metabolismo , Avena/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética , Perfilação da Expressão GênicaRESUMO
Culm development in grasses can be controlled by both miR156 and cytokinin. However, the crosstalk between the miR156-SPL module and the cytokinin metabolic pathway remains largely unknown. Here, we found CYTOKININ OXIDASE/DEHYDROGENASE4 (PvCKX4) plays a negative regulatory role in culm development of the bioenergy grass Panicum virgatum (switchgrass). Overexpression of PvCKX4 in switchgrass reduced the internode diameter and length without affecting tiller number. Interestingly, we also found that PvCKX4 was always upregulated in miR156 overexpressing (miR156OE) transgenic switchgrass lines. Additionally, upregulation of either miR156 or PvCKX4 in switchgrass reduced the content of isopentenyl adenine (iP) without affecting trans-zeatin (tZ) accumulation. It is consistent with the evidence that the recombinant PvCKX4 protein exhibited much higher catalytic activity against iP than tZ in vitro. Furthermore, our results showed that miR156-targeted SPL2 bound directly to the promoter of PvCKX4 to repress its expression. Thus, alleviating the SPL2-mediated transcriptional repression of PvCKX4 through miR156 overexpression resulted in a significant increase in cytokinin degradation and impaired culm development in switchgrass. On the contrary, suppressing PvCKX4 in miR156OE transgenic plants restored iP content, internode diameter, and length to wild-type levels. Most strikingly, the double transgenic lines retained the same increased tiller numbers as the miR156OE transgenic line, which yielded more biomass than the wild type. These findings indicate that the miR156-SPL module can control culm development through transcriptional repression of PvCKX4 in switchgrass, which provides a promising target for precise design of shoot architecture to yield more biomass from grasses.
Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Oxirredutases , Panicum , Proteínas de Plantas , Citocininas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Panicum/genética , Panicum/crescimento & desenvolvimento , Panicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente ModificadasRESUMO
MicroRNAs (miRNAs) are a class of endogenous, non-coding small-molecule RNAs that usually regulate the expression of target genes at the post-transcriptional level. miR156 is one of a class of evolutionarily highly conserved miRNA families. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor is one of the target genes that is regulated by miR156. SPL transcription factors are involved in regulating plant growth and development, hormone response, stress response, and photosynthesis. In the present study, transgenic potato plants with overexpressed miR156 were obtained via the Agrobacterium-mediated transformation method. The results showed that the expression levels of the target gene, StSPL9, were all downregulated in the transgenic plants with overexpressed Stu-miR156. Compared with those of the control plants, the plant height and root length of the transgenic plants were significantly decreased, while the number of lateral roots was significantly increased. These results revealed that the miR156/SPLs module was involved in regulating potato plant height and root growth.
RESUMO
The microRNA156 (miR156) family, one of the first miRNA families discovered in plants, plays various important roles in plant growth and resistance to various abiotic stresses. Previously, miR156s were shown to respond to drought stress, but miR156s in tea plants (Camellia sinensis (L.) O. Kuntze) have not been comprehensively identified and analyzed. Herein, we identify 47 mature sequences and 28 precursor sequences in tea plants. Our evolutionary analysis and multiple sequence alignment revealed that csn-miR156s were highly conserved during evolution and that the rates of the csn-miR156 members' evolution were different. The precursor sequences formed typical and stable stem-loop structures. The prediction of cis-acting elements in the CsMIR156s promoter region showed that the CsMIR156s had diverse cis-acting elements; of these, 12 CsMIR156s were found to be drought-responsive elements. The results of reverse transcription quantitative PCR (RT-qPCR) testing showed that csn-miR156 family members respond to drought and demonstrate different expression patterns under the conditions of drought stress. This suggests that csn-miR156 family members may be significantly involved in the response of tea plants to drought stress. Csn-miR156f-2-5p knockdown significantly reduced the Fv/Fm value and chlorophyll content and led to the accumulation of more-reactive oxygen species and proline compared with the control. The results of target gene prediction showed that csn-miR156f-2-5p targeted SQUAMOSA promoter binding protein-like (SPL) genes. Further analyses showed that CsSPL14 was targeted by csn-miR156f-2-5p, as confirmed through RT-qPCR, 5' RLM-RACE, and antisense oligonucleotide validation. Our results demonstrate that csn-miR156f-2-5p and CsSPL14 are involved in drought response and represent a new strategy for increasing drought tolerance via the breeding of tea plants.
RESUMO
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Assuntos
Axônios , Regeneração , Adulto , Humanos , Fenótipo , Folhas de Planta , ReproduçãoRESUMO
Perennial trees in boreal and temperate regions undergo growth cessation and bud set under short photoperiods, which are regulated by phytochrome B (phyB) photoreceptors and PHYTOCHROME INTERACTING FACTOR 8 (PIF8) proteins. However, the direct signaling components downstream of the phyB-PIF8 module remain unclear. We found that short photoperiods suppressed the expression of miR156, while upregulated the expression of miR156-targeted SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE 16 (SPL16) and SPL23 in leaves and shoot apices of Populus trees. Accordingly, either overexpression of MIR156a/c or mutagenesis of SPL16/23 resulted in the attenuation of growth cessation and bud set under short days (SD), whereas overexpression of SPL16 and SPL23 conferred early growth cessation. We further showed that SPL16 and SPL23 directly suppressed FLOWERING LOCUS T2 (FT2) expression while promoted BRANCHED1 (BRC1.1 and BRC1.2) expression. Moreover, we revealed that PIF8.1/8.2, positive regulators of growth cessation, directly bound to promoters of MIR156a and MIR156c and inhibited their expression to modulate downstream pathways. Our results reveal a connection between the phyB-PIF8 module-mediated photoperiod perception and the miR156-SPL16/23-FT2/BRC1 regulatory cascades in SD-induced growth cessation. Our study provides insights into the rewiring of a conserved miR156-SPL module in the regulation of seasonal growth in Populus trees.
Assuntos
Fitocromo , Populus , Fotoperíodo , Árvores , Proteínas de Plantas/metabolismo , Estações do Ano , Fitocromo/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Mulberry plants (Morus alba) have leaf shapes, ranging from unlobed to lobed, which are crucial for yield, growth, and adaptability, indicating their ability to adapt to their environment. Competing endogenous RNAs (ceRNAs) constitute a web of RNAs within the organism's transcriptional regulatory system, including protein-coding genes (mRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and others. In this study, samples for ceRNA sequencing were categorized into two groups: whole leaves and lobed leaves, each group with three replicates. In addition, we isolated, cloned, and characterized the precursor miRNA (miR156x) from the leaves of M. alba. miR156x precursor had a length of 107 base pairs and a minimum folding free energy of 50.27 kcal/mol. We constructed a pCAMBIA-35S-GUS-miR156x dual overexpression vector and established a transient transformation system for mulberry. At an optimal transformation solution (OD600 = 0.7), the GUS gene showed a higher expression in the leaves of transiently transformed mulberry with miR156x overexpression, four days after transformation, while the target genes of miR156x had decreased expression in the same leaves. Investigations into the transgenic mulberry plants uncovered various modifications to physio-chemical parameters including POD, SOD, PRO, MDA, soluble proteins and sugars, and chlorophyl content. miRNAs in the plants were found to act as negative regulators of gene expression in response to changes in leaf shape regulation, which was confirmed in vitro using dual-luciferase reporter assays. Subsequently, we cloned Maspl3 in vitro and conducted GST-Pull down assays, obtaining multiple proteins that interacted with the Maspl3 gene. This indicates that the miR156x/Maspl3/MSTRG.25812.1 regulatory module contributes to the differences in mulberry leaf shape.
Assuntos
MicroRNAs , Morus , Morus/química , RNA Endógeno Competitivo , Folhas de Planta/metabolismo , MicroRNAs/metabolismo , Plantas Geneticamente Modificadas/genética , Genes ReguladoresRESUMO
MicroRNAs (miRNAs), known as a kind of non-coding RNA, can negatively regulate its target genes. To date, the roles of various miRNAs in plant development and resistance to abiotic and biotic stresses have been widely explored. The present review summarized and discussed the functions of miR156 or miR156-SPL module in abiotic and biotic stresses, such as drought, salt, heat, cold stress, UV-B radiation, heavy mental hazards, nutritional starvation, as well as plant viruses, plant diseases, etc. Based on this, the regulation of miR156-involved stress tolerance was better understood, thus, it would be much easier for plant biologists to carry out suitable strategies to help plants suffer from unfavorable living environments.
Assuntos
MicroRNAs , Estresse Fisiológico , Estresse Fisiológico/genética , Plantas/genética , MicroRNAs/genética , Regulação da Expressão Gênica de Plantas/genéticaRESUMO
BACKGROUND: Rapeseed (Brassica napus L.) is the third largest source of vegetable oil in the world, and Sclerotinia sclerotiorum (Lib.) is a major soil-borne fungal plant pathogen that infects more than 400 plant species, including B. napus. Sclerotinia stem rot caused an annual loss of 10 - 20% in rapeseed yield. Exploring the molecular mechanisms in response to S. sclerotiorum infection in B. napus is beneficial for breeding and cultivation of resistant varieties. To gain a better understanding of the mechanisms regarding B. napus tolerance to Sclerotinia stem rot, we employed a miRNAome sequencing approach and comprehensively investigated global miRNA expression profile among five relatively resistant lines and five susceptible lines of oilseed at 0, 24, and 48 h post-inoculation. RESULTS: In this study, a total of 40 known and 1105 novel miRNAs were differentially expressed after S. sclerotiorum infection, including miR156, miR6028, miR394, miR390, miR395, miR166, miR171, miR167, miR164, and miR172. Furthermore, 8,523 genes were predicted as targets for these differentially expressed miRNAs. These target genes were mainly associated with disease resistance (R) genes, signal transduction, transcription factors, and hormones. Constitutively expressing miR156b (OX156b) plants strengthened Arabidopsis resistance against S. sclerotiorum accompanied by smaller necrotic lesions, whereas blocking miR156 expression in Arabidopsis (MIM156) led to greater susceptibility to S. sclerotiorum disease, associated with extensive cell death of necrotic lesions. CONCLUSIONS: This study reveals the distinct difference in miRNA profiling between the relatively resistant lines and susceptible lines of B. napus in response to S. sclerotiorum. The identified differentially expressed miRNAs related to sclerotinia stem rot resistance are involved in regulating resistance to S. sclerotiorum in rapeseed by targeting genes related to R genes, signal transduction, transcription factors, and hormones. miR156 positively modulates the resistance to S. sclerotiorum infection by restricting colonization of S. sclerotiorum mycelia. This study provides a broad view of miRNA expression changes after S. sclerotiorum infection in oilseed and is the first to elucidate the function and mechanism underlying the miR156 response to S. sclerotiorum infection in oilseed rape.
Assuntos
Arabidopsis , Ascomicetos , Brassica napus , Brassica rapa , MicroRNAs , Brassica napus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Arabidopsis/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Brassica rapa/genética , Ascomicetos/fisiologia , Hormônios/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Many developmental processes associated with fruit development occur at the floral meristem (FM). Age-regulated microRNA156 (miR156) and gibberellins (GAs) interact to control flowering time, but their interplay in subsequent stages of reproductive development is poorly understood. Here, in tomato (Solanum lycopersicum), we show that GA and miR156-targeted SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL or SBP) genes interact in the tomato FM and ovary patterning. High GA responses or overexpression of miR156 (156OE), which leads to low expression levels of miR156-silenced SBP genes, resulted in enlarged FMs, ovary indeterminacy and fruits with increased locule number. Conversely, low GA responses reduced indeterminacy and locule number, and overexpression of a S. lycopersicum (Sl)SBP15 allele that is miR156 resistant (rSBP15) reduced FM size and locule number. GA responses were partially required for the defects observed in 156OE and rSBP15 fruits. Transcriptome analysis and genetic interactions revealed shared and divergent functions of miR156-targeted SlSBP genes, PROCERA/DELLA and the classical WUSCHEL/CLAVATA pathway, which has been previously associated with meristem size and determinacy. Our findings reveal that the miR156/SlSBP/GA regulatory module is deployed differently depending on developmental stage and create novel opportunities to fine-tune aspects of fruit development that have been important for tomato domestication.
Assuntos
MicroRNAs , Solanum lycopersicum , Giberelinas/metabolismo , Solanum lycopersicum/genética , Flores , Meristema/metabolismo , Ovário/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
The SPL (SQUAMOSA-promoter binding protein-like) gene family is one of the largest plant transcription factors and is known to be involved in the regulation of plant growth, development, and stress responses. The genome-wide analysis of SPL gene members in a diverse range of crops has been elucidated. However, none of the genome-wide studies on the SPL gene family have been carried out for oil palm, an important oil-yielding plant. In this research, a total of 24 EgSPL genes were identified via a genome-wide approach. Phylogenetic analysis revealed that most of the EgSPLs are closely related to the Arabidopsis and rice SPL gene members. EgSPL genes were mapped onto the only nine chromosomes of the oil palm genome. Motif analysis revealed conservation of the SBP domain and the occurrence of 1-10 motifs in EgSPL gene members. Gene duplication analysis demonstrated the tandem duplication of SPL members in the oil palm genome. Heatmap analysis indicated the significant expression of SPL genes in shoot and flower organs of oil palm plants. Among the identified EgSPL genes, a total 14 EgSPLs were shown to be targets of miR156. Real-time PCR analysis of 14 SPL genes showed that most of the EgSPL genes were more highly expressed in female and male inflorescences of oil palm plants than in vegetative tissues. Altogether, the present study revealed the significant role of EgSPL genes in inflorescence development.