Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 363: 121328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850916

RESUMO

Antibiotics and organic residues from Tetracycline (TC) and other pharmaceuticals administered to aquatic living organism have negative impacts on aquatic environment by killing-off non-target living organisms and developing antibiotic-resistant bacteria. In this study, Micro-Nano Bubble (MNB) system was used to remove TC residues. MNB system demonstrated good level of degradation efficiency, as resulted in experiment where in time of 100 min, the TC degraded at rate of 82.66% from its initial concentration of TC when the initial concentration was 1 mg/L. When the initial concentration was increased to 10 mg/L, MNB system degraded TC at 64.35% of their initial, this means MNB system demonstrated good level of efficiency for TC removal and indicated that it is more efficient in TC degradation under the conditions of low initial TC concentration and high availability of dissolved oxygen (DO). In the system as the temperature increased there was a significant decrease in DO saturation which was related to the TC complex structure that contain multiple function groups such as amino groups, hydroxyl and carboxyl which possess high strong affinity with oxygen that leads to their adsorption onto bubble surface. This study provides significant insights into the application of MNB system for the removal of organic residues within aquatic ecosystem and underscores the need for further exploration of MNB technology for environmental remediation.


Assuntos
Tetraciclina , Tetraciclina/química , Tetraciclina/análise , Poluentes Químicos da Água/química , Adsorção , Oxigênio/química , Antibacterianos/química
2.
Plants (Basel) ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794448

RESUMO

To explore the compensation effect of aeration on tomato vegetative and reproductive growth in arid and semi-arid areas, a two-year field experiment was conducted with four micro-nano aeration ratios (0%, 5%, 10%, and 15%) and three nitrogen topdressing levels (80, 60, and 40 kg·ha-1) during the tomato growth period in Ningxia, China. The results showed that increasing the aeration ratio in the range of 0-15% was conducive to the enhancement of tomato root vigor (the ability of triphenyltetrazolium chloride to be reduced, 3-104%) and the leaf net photosynthetic rate (14-63%), favorable to the facilitation of plant dry matter accumulation (3-59%) and plant nitrogen accumulation (2-70%), and beneficial to the improvement of tomato yield (12-44%) and fruit quality. Interestingly, since the aeration ratio exceeded 10%, the increase in the aeration ratio showed no significant effects on the single-fruit weight, tomato yield, and fruit quality. Moreover, with aerated underground drip irrigation, properly reducing the traditional nitrogen topdressing level (80 kg·ha-1) by 25% was favorable for enhancing tomato root vigor (5-31%), increasing tomato yield (0.5-9%), and improving fruit soluble solid accumulation (2-5%) and soluble sugar formation (4-9%). Importantly, increasing the aeration ratio by 5% could compensate for the adverse effects of reducing the nitrogen topdressing level by 25% by improving the leaf photosynthetic rate, promoting plant dry matter accumulation, increasing tomato yield, and enhancing the soluble solid and soluble sugar accumulation in tomato fruits. Synthetically considering the decrease in the nitrogen topdressing amount, leading to plant growth promotion, a tomato yield increase, and fruit quality improvement, a favorable nitrogen topdressing level of 60 kg·ha-1 and the corresponding proper aeration ratio of 10% were suggested for tomato underground drip irrigation in the Yinbei Irrigation District of Ningxia.

3.
Chemosphere ; 353: 141657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452978

RESUMO

In order to explore the effects of micro-nano bubble water (MNBW) on compost maturation and the microbial community in cow manure and straw during aerobic composting, we conducted composting tests using tap water with 12 mg/L (O12), 15 mg/L (O15), 18 mg/L (O18), and 21 mg/L (O21) dissolved oxygen in MNBW, as well as tap water with 9 mg/L dissolved oxygen as a control (CK). The results showed that O21 increased the maximum compost temperature to 64 °C, which was higher than the other treatments. All treatments met the harmless standards for compost. The seed germination index (GI) was largest under O21 and 15.1% higher than that under CK, and the non-toxic compost degree was higher. Redundancy analysis showed that the temperature, C/N, pH, and GI were important factors that affected the microbial community composition. The temperature, C/N, and pH were significantly positively correlated with Firmicutes and Actinobacteria (p < 0.05). Firmicutes was the dominant phylum in the mesophilic stage (2-6 days) and it accounted for a large proportion under O21, where the strong thermophilic metabolism increased the production of heat and prolonged the high temperature period. The bacterial genus Ammoniibacillus in Firmicutes accounted for a large proportion under O21 and it accelerated the decomposition of substrates. Therefore, the addition of MNBW changed the microbial community to affect the maturation of the compost, and the quality of the compost was higher under O21.


Assuntos
Compostagem , Microbiota , Animais , Bovinos , Feminino , Nitrogênio/análise , Bactérias/metabolismo , Firmicutes , Esterco/microbiologia , Oxigênio , Solo
4.
Environ Technol ; : 1-10, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471071

RESUMO

A 10-litre pilot scale micro-nano bubble (MNB)-enhanced photocatalytic degradation system was developed using ZnO as the photocatalyst and salicylic acid (SA) as the model pollutant. The effectiveness of the MNB/ZnO/UV system was systematically compared with those of MNB, UV, MNB/UV, MNB/ZnO and ZnO/UV degradation systems. The effects of process parameters, including catalyst dosage, pollutant concentration, air-intake rate, pH and salt content on the degradation of SA, were comprehensively investigated. Optimum performance was obtained at neutral conditions with a catalyst dosage of 0.3 g/L and an air-intake rate of 0.1 L/min. For the degradation of SA, a kinetic constant of 0.04126/min was achieved in the MNB/ZnO/UV system, which is 4.5 times greater than that obtained in the conventional ZnO/UV system. The substantial increase in the degradation rate can be attributed to that the air MNB not only enhanced the gas-liquid mass transfer efficiency but also elevated the concentration of dissolved oxygen. A 10-litre pilot scale MNB/ZnO/UV system was successfully applied to the purification of lake water and river water, demonstrating great application potential for wastewater treatment.

5.
J Hazard Mater ; 468: 133810, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38382340

RESUMO

Organic contaminants have a tendency to accumulate in low-permeability aquifers, making their removal challenging and creating a bottleneck in groundwater remediation efforts. The use of ozone micro-nano bubbles, due to their smaller size compared to traditional macrobubbles, shows potential for efficient penetration into the low-permeability aquifer and effective oxidization of contaminants. This study conducted batch experiments, column studies, and 2D tank experiments to systematically investigate the remediation efficiency of toluene in a heterogeneous aquifer using ozonated water (OW), ozone micro-bubble water (OMBW), and encapsulated ozone micro-nano bubble water (EOMBW) with rhamnolipid. Experimental results showed that rhamnolipid effectively increased the densities and reduced the sizes of micro-nano bubbles, leading to improved ozone preservation and enhanced toluene degradation. Nanobubbles exhibited higher mobility compared to microbubbles in porous media, while rhamnolipid increased the density of penetrated nanobubbles by 9.6 times. EOMBW demonstrated superior efficiency in oxidizing toluene in low-permeability aquifers, and a numerical model was developed to successfully simulate the ozone and toluene concentration. The model revealed that the increased oxidation rate by EOMBW was attributed to the preservation of ozone in micro-nano bubbles and the enhanced toluene oxidation rate. These findings contribute significantly to the application of EOMBW in heterogeneous aquifer remediation.

6.
Chemosphere ; 350: 141103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184083

RESUMO

This work reports the ion exchange fabrication of maghemite (γ-Fe2O3) modified NaY zeolite (Fe2O3@Y) with bifunction of adsorption and catalysis. The Fe3+ successfully replaced the Na+ in the ß cage of zeolite in the ion exchange process and coordinated with framework oxygens to form magnetic γ-Fe2O3. Therefore, most of the γ-Fe2O3 particles were confined in the ß cages, which resulted in the high dispersal and stability of the catalyst. The Fe2O3@Y could remove methylene blue (MB) model pollutants up to 59.02 and 61.47% through the adsorption and catalysis process, respectively. The hydrogen bond between the OH- ions around the Fe2O3@Y surface and the N and O presented in the MB molecules enabled the chemical adsorption to MB, which accorded with the pseudo-second-order kinetic model. Further, the H+ existed in the solution and the ß cage of zeolite promoted the collapse of micro-nano bubbles (MNBs). Then, the γ-Fe2O3 catalyst would be activated by high temperature and oxidated OH- to produce hydroxyl radicals for pollutant degradation. Thus, pollutant removal was attributed to the combined effects of adsorption and catalysis in the Fe2O3@Y + MNB system. In this work, the Fe2O3@Y was demonstrated as a potentially magnetic adsorbent or MNB catalyst for wastewater treatment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Zeolitas , Compostos Férricos , Catálise , Adsorção , Poluentes Químicos da Água/análise , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA