Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39264087

RESUMO

This study reports the isolation and characterization of a Streptomyces sp. from soil, capable of producing bioactive secondary metabolites active against a variety of bacterial human pathogens. We targeted the antimicrobial activity against Escherichia coli ATCC-BAA 2469, a clinically relevant strain of bacteria harbouring resistance genes for carbapenems, extended spectrum beta-lactams, tetracyclines, fluoroquinones, etc. Preliminary screening using the spot inoculation technique identified Streptomyces sp. NP73 as the potent strain among the 74 isolated Actinomycetia strain. 16S rRNA gene and whole genome sequencing (WGS) confirmed its taxonomical identity and helped in the construction of the phylogenetic tree. WGS revealed the predicted pathways and biosynthetic gene clusters responsible for producing various types of antibiotics including the isolated compound. Bioactivity guided fractionation and chemical characterization of the active fraction, carried out using liquid chromatography, gas chromatography-mass spectrometry, infra-red spectroscopy, and nuclear magnetic resonance spectroscopy, led to the tentative identification of the active compound as Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-, a diketopiperazine molecule. This compound exhibited excellent antimicrobial and anti-biofilm properties against E. coli ATCC-BAA 2469 with an MIC value of 15.64 µg ml-1, and the low cytotoxicity of the compound identified in this study provides hope for future drug development.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , Streptomyces , Streptomyces/química , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/classificação , Streptomyces/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Índia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , RNA Ribossômico 16S/genética , Florestas , Biofilmes/efeitos dos fármacos , Sequenciamento Completo do Genoma , Humanos , Família Multigênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-39292307

RESUMO

Poorly-treated wastewater harbors harmful microorganisms, posing risks to both the environment and public health. To mitigate this, it is essential to implement robust disinfection techniques in wastewater treatment plants. The use of performic acid (PFA) oxidation has emerged as a promising alternative, due to its powerful disinfection properties and minimal environmental footprint. While PFA has been used to inactivate certain microbial indicators, its potential to tackle the entire microbial community in effluents, particularly resistant bacterial strains, remains largely unexplored. The present study evaluates the efficacy of PFA disinfection on the microbial communities of a WWTP effluent, through microbial resistance mechanisms due to their membrane structure. The effluent microbiome was quantified and identified. The results showed that the number of damaged cells increases with CT, reaching a maximum for CT = 240 mg/L•min and plateauing around 60 mg/L•min, highlighting the optimal conditions for PFA-disinfection against microbial viability. A low PFA level with a 10-min contact time significantly affected the microbial composition. It is worth noting the sensitivity of several bacterial genera such as Flavobacterium, Pedobacter, Massilia, Exiguobacterium, and Sphingorhabdus to PFA, while others, Acinetobacter, Leucobacter, Thiothrix, Paracoccus, and Cloacibacterium, showed resistance. The results detail the resistance and sensitivity of bacterial groups to PFA, correlated with their Gram-positive or Gram-negative membrane structure. These results underline PFA effectiveness in reducing microbial levels and remodeling bacterial composition, even with minimal concentrations and short contact times, demonstrating its suitability for widespread application in WWTPs.

3.
Environ Res ; 262(Pt 2): 119879, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243843

RESUMO

The airborne microbiome significantly influences human health and atmospheric processes within Earth's troposphere and is a crucial focus for scientific research. This study aimed to analyze the composition, diversity, distribution, and spatiotemporal characteristics of airborne microbes in Qatar's ambient air. Air samples were collected using a sampler from ten geographically or functionally distinct locations during a period of one year. Spatial and seasonal variations significantly impacted microbial concentrations, with the highest average concentrations observed at 514 ± 77 CFU/m3 for bacteria over the dry-hot summer season and 134 ± 31 CFU/m3 for fungi over the mild winter season. Bacterial concentrations were notably high in 80% of the locations during the dry-hot summer sampling period, while fungal concentrations peaked in 70% of the locations during winter. The microbial diversity analysis revealed several health-significant bacteria including the genera Chryseobacterium, Pseudomonas, Pantoea, Proteus, Myroides, Yersinia, Pasteurella, Ochrobactrum, Vibrio, and fungal strains relating to the genera Aspergillus, Rhizopus Fusarium, and Penicillium. Detailed biochemical and microscopic analyses were employed to identify culturable species. The strongest antibiotic resistance (ABR) was observed during the humid-hot summer season, with widespread resistance to Metronidazole. Health risk assessments based on these findings indicated potential risks associated with exposure to high concentrations of specific bioaerosols. This study provides essential baseline data on the natural background concentrations of bioaerosols in Qatar, offering insights for air quality assessments and forming a basis for public health policy recommendations, particularly in arid regions.

4.
Heliyon ; 10(16): e36475, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39262967

RESUMO

Lithodes santolla (SKC) and Paralomis granulosa (FSKC) are economically important resources exploited in southern South America. The effect of refrigerated storage (4 °C on flake ice) on physico-chemical (pH, thiobarbituric reactive substances (TBARs), total volatile basic nitrogen (TVB-N), water holding capacity (WHC), and water content (WC)), microbiological (total viable mesophilic bacteria (TVMC), psychrotrophic bacteria (TVPC), Staphylococcus spp, coliforms, enterobacteria, molds and yeasts) and sensory (odor, appearance, texture, juiciness, and taste) parameters was analyzed in the cooked SKC and FSKC merus. For each species, cooked merus from 36 animals were randomly distributed into 6 groups, corresponding to 0, 2, 5, 8, 11, and 14 days of storage. On each day, samples were taken for physico-chemical (n = 6), microbiological (n = 3), and sensory (n = 15) analyses. The pH values increased over time (P < 0.01 in both species), the TBARs only increased in FSKC (P = 0.008), whereas the TVB-N significantly rose only in SKC (P = 0.001). The WHC and the WC did not change over time for any of the king crab species (P > 0.05) in all cases. The presence of TVCM, TVCP, and Staphylococcus spp. in both species was observed from day 0. Furthermore, pathogenic microorganisms (S. aureus, coliforms, and enterobacteria) were not detected, and only the TVCP in SFKC reached the suggested microbial limit after 11 days. All sensory scores significantly decreased (P < 0.001) over time, but the quality of both king crab species remained acceptable until the 11th day. These findings suggest that the shelf-life of cooked merus was 11 and 8 days for SKC and SFKC, respectively, when stored at 4 °C with the presence of flake ice. These contributions consist of elucidating the shelf-life of these economically important seafood products and providing insights into their quality maintenance during storage.

5.
Environ Sci Pollut Res Int ; 31(38): 50630-50641, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102138

RESUMO

The COVID-19 pandemic has led to an unprecedented increase in pharmaceutical drug consumption and plastic waste disposal from personal protective equipment. Most drugs consumed during the COVID-19 pandemic were used to treat other human and animal diseases. Hence, their nearly ubiquitous presence in the soil and the sharp increase in the last 3 years led us to investigate their potential impact on the environment. Similarly, the compulsory use of face masks has led to an enormous amount of plastic waste. Our study aims to investigate the combined effects of COVID-19 drugs and microplastics from FFP2 face masks on important soil processes using soil microcosm experiments. We used three null models (additive, multiplicative, and dominative models) to indicate potential interactions among different pharmaceutical drugs and mask MP. We found that the multiple-factor treatments tend to affect soil respiration and FDA hydrolysis more strongly than the individual treatments. We also found that mask microplastics when combined with pharmaceuticals caused greater negative effects on soil. Additionally, null model predictions show that combinations of high concentrations of pharmaceuticals and mask MP have antagonistic interactions on soil enzyme activities, while the joint effects of low concentrations of pharmaceuticals (with or without MP) on soil enzyme activities are mostly explained by null model predictions. Our study underscores the need for more attention on the environmental side effects of pharmaceutical contamination and their potential interactions with other anthropogenic global change factors.


Assuntos
COVID-19 , Máscaras , Microplásticos , Poluentes do Solo , Solo , Solo/química , Microplásticos/análise , Poluentes do Solo/análise , Humanos , SARS-CoV-2 , Plásticos , Pandemias
6.
Environ Pollut ; 359: 124753, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153540

RESUMO

The presence of mixed microplastics (MPs) in anaerobic wastewater treatment processes has been shown to impede fermentation performance by suppressing microbial activity. Microbial electrosynthesis (MES), with its extensive potential, offers a promising solution for refractory substances management and methane recovery, achieved through the enhancement of microbial metabolism and interspecies electron transfer. This study, therefore, delves into the functional impacts and the microbial response to MES in the remediation of wastewater contaminated with mixed-MPs. Results indicated that mixed-MPs could inhibit methane production (-52.38%) and substance removal (-26.59%), and MES could effectively mitigate this inhibitory effect (-22.86%, -19.01%). Concurrently, MES also boosts enzymatic activities pivotal for electron transfer, such as cytochrome c and nicotinamide adenine dinucleotide (NADH), as well as those linked to energy metabolism like adenosine triphosphate (ATP). Furthermore, MES bolsters microbial resistance to mixed-MPs, as evidenced by an increase in extracellular polymeric substances (EPS), albeit with a minor rise in reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) release. Correspondingly, electric stimulation promoted the enrichment of functional microorganisms associated with fermentation, acetate production, electrogenesis, and methanogenesis, and stimulated elevated expression levels of genes related to methane metabolism. Notably, the Methanothrix-mediated acetoclastic pathway emerges as the predominant methanogenic route, succeeded by the Methanobacterium-driven hydrogenotrophic pathway. Lastly, the study underscores the supportive role of applied voltage and carriers in energy metabolism and substance transport, which are associated with methanogenesis. Overall, MES demonstrates efficacy in mitigating the biotoxicity induced by mixed-MPs exposure and in enhancing anaerobic wastewater treatment and methane recovery.


Assuntos
Metano , Microplásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano/metabolismo , Estimulação Elétrica , Poluentes Químicos da Água/metabolismo
7.
Plants (Basel) ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124135

RESUMO

Systemic plant protection products, such as neonicotinoids (NIs), are capable of being translocated throughout a plant. Although NIs are less toxic to mammals, fish, and birds, their impact on microbial and non-target insects is of concern. This study investigates the uptake, translocation, and accumulation of the NI, imidacloprid (IMI), in romaine lettuce (Lactuca sativa L. var. longipolia). Exposing 15-day-old seedlings to "10 mg/L" of IMI, the effects on microbial communities in both cultivated (CS) and non-cultivated soil (NCS) were studied along with IMI translocation within plant tissues. The concentrations of IMI in soil varied temporally and between soil types after initial application, with a decrease from 2.0 and 7.7 mg/kg on the first day of sampling to 0.5 and 2.6 mg/kg on the final sampling day (day 35) for CS and NCS, respectively. The half-life of IMI soil was 10.7 and 72.5 days in CS and NCS, respectively, indicating that IMI degraded more quickly in CS, possibly due to smaller grain size, aeration, microbial degradation, and water flow. The accumulated concentrations of IMI in lettuce tissues ranged from 12.4 ± 0.2 and 18.7± 0.9 mg/kg in CS and NCS, respectively. The highest concentration of IMI was found in the shoots, followed by the roots, whereas the soil showed the lowest IMI residuals at the end of the trial. Soil bacteria and fungi were altered by the application of IMI, with a lower abundance index within the bacterial community, indicating a negative impact on the distribution of bacteria in the soil.

8.
Trends Biotechnol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122591

RESUMO

Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO2) to valuable carbon-based chemicals. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here, we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2 to even-chain C2-C6 carboxylic acids over 248 days. We demonstrate a threefold higher biofilm concentration, volumetric current density, and productivity compared with the state of the art. Most notably, the volumetric productivity (VP) resembles those achieved in laboratory-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2 reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale up the technology.

9.
Water Res ; 266: 122336, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39216129

RESUMO

Water quality degradation by decommissioned mining sites is an environmental issue recognized globally. In the Ore mountains of Central Europe, a wide array of contaminants is released by abandoned under- and aboveground mining sites threatening the quantity and quality of surface and groundwater resources. Here, we focus on the less-explored internal pollution processes within these mines involving organic carbon and microorganisms in trace metal(loid)s mobilization processes. Over an 18-month period, we conducted hydrological and biogeochemical monitoring at the Reiche Zeche mine, a former lead-zinc-silver mine, in Germany, reaching 230 meters below ground, well below the critical zone. Our results show strong seasonal fluctuations in water availability, concentrations of metal(loid)s, pH, and dissolved organic matter (DOM) components across multiple depths. Excess metal(loid) presence during high flow conditions indicated mobilization behavior deviating from conservative dilution. Our findings reveal strong positive correlations between metal(loid) variability and pH (0.894), and between metal(loid) variability and the DOM fluorescent component C2 (-0.910), a proxy for microbial activity. Accordingly, the microbial processes may significantly contribute to the observed metal(loid) composition and fluxes. By elucidating the intricate roles of hydrological and biogeochemical factors in trace metal(loid) mobilization, our research offers a comprehensive framework for improving mine water management and remediation, potentially informing global environmental policies and sustainable mining practices.

10.
J Dairy Sci ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033910

RESUMO

Corn grain with a high phosphorus (P) content (mainly in the form of phytate-P) may need to be processed to improve the digestibility of nutrients for young calves. Processing corn grains can improve the accessibility of phytate-P to the rumen enzymes and increase the bioavailability of P, which benefits the growth and development of calves. The objective of this study was to investigate the effects of feeding starter diets with steam-flaked corn (SFC) compared with ground corn (GC) with 2 P contents of 0.4% and 0.7% DM basis on intake, growth performance, nutrient digestibility, blood metabolites and urinary purine derivatives in dairy calves. A total of 48 female Holstein dairy calves (3 d old; average initial weight 39.7 ± 3.9 kg) were randomly assigned to a 2 × 2 factorial arrangement of treatments (12 calves/treatment) in a randomized complete block design. The treatment groups were: 1) a starter diet of GC with 0.4% P (GC-0.4P); 2) a starter diet of GC with 0.7% P (GC-0.7P); 3) a starter diet of SFC with 0.4% P (SFC-0.4P); 4) a starter diet of SFC with 0.7% P (SFC-0.7P). Calves received 6 L/d of transition milk on d 2-3 and 5 L/d of whole milk on d 4-30, which was increased to 7 L/d on d 31-45, then decreased to 5 L/d on d 46-60 and reduced to a single feeding of 2 L on d 61-62. All calves had free access to starter feed and water. All calves were weaned on d 63 and remained in the study until d 83. Rumen fluid samples were collected on d 38 (pre-weaning) and d 76 (post-weaning). Blood samples were collected on d 40 and 80 and urine samples were collected on 4 consecutive days from d 79 to 82 to analyze urinary excretion of PD. The phytate-P content ranged from 0.23 to 0.17 for GC and SFC, respectively. In particular, the interaction between corn processing method and P content showed that the SFC-0.7P diets had a greater intake of starter feed during the pre- and post-weaning periods compared with the other experimental groups. In addition, calves fed the SFC-0.7P diet had greater average daily gain, body weight, withers height at weaning, better organic matter digestibility, higher blood ß-hydroxybutyrate levels and higher microbial protein synthesis compared with all other groups. Feeding the SFC diet also resulted in improved feed efficiency, improved P digestibility and a tendency toward a lower rumen pH, albeit with a tendency toward an increase in blood glucose concentration during the pre-weaning period. In addition, the inclusion of 0.7% P to the starter diet resulted in increased fiber digestibility and a slight improvement in growth performance, which was particularly evident in hip height. Overall, the inclusion of SFC in the calf starter diet, especially in combination with a 0.7% DM basis P supplement, improved growth performance and nutrient utilization in dairy calves compared with GC.

11.
Microorganisms ; 12(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065216

RESUMO

The use of artificial fertilizers follows the intensification of agricultural production as a consequence of population growth, which leads to soil depletion, loss of organic matter, and pollution of the environment and production. This can be overcome by increasing the use of organic fertilizers in agriculture. In the present study, we investigated the effect of using vermicompost, biochar, mineral fertilizer, a combination of vermicompost and mineral fertilizer, and an untreated control on alluvial-meadow soil on the development of fodder winter barley Hordeum vulgare L., Zemela cultivar. We used a randomized complete block design of four replications per treatment. Barley grain yield, number of plants, and soil and microbiological parameters were studied. We found statistically proven highest grain yield and grain protein values when applying vermicompost alone, followed by the combined treatment and mineral fertilizer. The total organic carbon was increased by 70.2% in the case of vermicompost and by 44% in the case of combined treatment, both compared to the control. Thus, soil microbiome activity and enzyme activities were higher in vermicompost treatment, where the activity of ß-glucosidase was 29.4% higher in respect to the control, 37.5% to the mineral fertilizer, and 24.5% to the combined treatments. In conclusion, our study found the best overall performance of vermicompost compared to the rest of the soil amendments.

12.
Sci Rep ; 14(1): 15471, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969697

RESUMO

This study examines the effect of phycoerythrin (PE) from a cyanobacterial Nostoc strain encapsulated with alginate as a potential prebiotic to produce synbiotic ice cream products with Lactobacillus casei. It was found that the addition of the encapsulated PE affected, mostly favourably, the physicochemical properties, antioxidant activity, probiotic survival, volatile compound contents, and sensory acceptability of the synbiotic ice cream samples before and after aging at the freezing periods of one day to eight weeks. Thus, it confirms the prebiotic potential of PE for synbiotic ice creams with L. casei.


Assuntos
Alginatos , Sorvetes , Lacticaseibacillus casei , Ficoeritrina , Simbióticos , Lacticaseibacillus casei/metabolismo , Sorvetes/microbiologia , Alginatos/química , Ficoeritrina/química , Simbióticos/administração & dosagem , Antioxidantes/química , Nostoc/metabolismo , Probióticos
13.
Environ Technol ; : 1-10, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989673

RESUMO

An electrochemical biofilter (EBF) was developed for enhancing the removal of volatile organic compounds (VOCs) through current. The removal efficiency (RE) of toluene exhibited a notable increase of 15% while the biomass growth rate exhibited a corresponding decline of 46% under an optimal current intensity of 50 mA. Meanwhile, the efficacy of the EBF system was markedly enhanced upon the removal of n-hexane, styrene, dichloromethane, and diisobutylene. The results indicated that there was an 11% to 49% increase in RE and a 0% to 64% reduction in biomass growth rates under the influence of the current. The current stimulation inhibited the accumulation of microorganisms, thereby alleviating biofilm clogging. The relative abundance of gram-positive phyla, including Firmicutes and Actinobacteria, increased by 15% and 23%, respectively, while the traditionally dominant genera within the Proteobacteria phylum, such as Rhodococcus and Dokdonella, exhibited a decline. In addition, the presence of hydrogen peroxide, free chlorine, and superoxides in the leachate indicated that the oxidative reaction increased in EBF system. This study provides an attractive pathway for current stimulation to enhance degradation of VOCs and alleviate biofilm clogging.

14.
Animals (Basel) ; 14(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998037

RESUMO

This study investigated how sucralose influenced rabbit intestine and caecal microbial activity, blood parameters, growth performance, carcass characteristics, and digestibility. In total, 160 5-week-old rabbits from the APRI line weighing 563.29 gm were randomly assigned to four experimental groups with four replicates-5 males and 5 females in each. Four experimental groups were used, as follows: SUC1, SUC2, and SUC3 got 75, 150, and 300 mg of sucralose/kg body weight in water daily, while the control group ate a basal diet without supplements. The results showed that both the control and SUC1 groups significantly (p < 0.05) increased daily weight gain and final body weight. Sucralose addition significantly improved feed conversion ratio (p < 0.05) and decreased daily feed intake (gm/d). The experimental groups do not significantly differ in terms of mortality. Furthermore, nutrient digestibility was not significantly affected by sucralose treatment, with the exception of crud protein digestion, which was significantly reduced (p < 0.05). Additionally, without altering liver or kidney function, sucralose administration dramatically (p < 0.05) decreased blood serum glucose and triglyceride levels while increasing total lipids, cholesterol, and malonaldehyde in comparison to the control group. Furthermore, the addition of sucrose resulted in a significant (p < 0.05) increase in the count of total bacteria, lactobacillus, and Clostridium spp., and a decrease in the count of Escherichia coli. Further analysis using 16S rRNA data revealed that sucralose upregulated the expression of lactobacillus genes but not that of Clostridium or E. Coli bacteria (p < 0.05). Therefore, it could be concluded that sucralose supplementation for rabbits modifies gut microbiota and boosts beneficial bacteria and feed conversion ratios without side effects. Moreover, sucralose could decrease blood glucose and intensify hypercholesterolemia and should be used with caution for human consumption.

15.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000051

RESUMO

Amidst the growing concern of antimicrobial resistance as a significant health challenge, research has emerged, focusing on elucidating the antimicrobial potential of polyphenol-rich extracts to reduce reliance on antibiotics. Previous studies explored the antifungal effects of extracts as potential alternatives to conventional therapeutic strategies. We aimed to assess the antibacterial and antifungal effects of standardised pomegranate extract (PE) and lemon extract (LE) using a range of Gram-negative and Gram-positive bacteria and two yeast species. Additionally, we assessed the antimicrobial activities of common antibiotics (Ciprofloxacin, Imipenem, Gentamicin, and Ceftazidime), either alone or in combination with extracts, against Staphylococcus aureus and Escherichia coli. PE displayed substantial antibacterial (primarily bactericidal) and antifungal effects against most pathogens, while LE exhibited antibacterial (mostly bacteriostatic) and antifungal properties to a lesser extent. When compared with antibiotics, PE showed a greater zone of inhibition (ZOI) than Ciprofloxacin and Ceftazidime (p < 0.01) and comparable ZOI to Gentamicin (p = 0.4) against Staphylococcus aureus. However, combinations of either PE or LE with antibiotics exhibited either neutral or antagonistic effects on antibiotic activity against Staphylococcus aureus and Escherichia coli. These findings contribute to the existing evidence regarding the antimicrobial effects of PE and LE. They add to the body of research suggesting that polyphenols exert both antagonistic and synergistic effects in antimicrobial activity. This highlights the importance of identifying optimal polyphenol concentrations that can enhance antibiotic activity and reduce antibiotic resistance. Further in vivo studies, starting with animal trials and progressing to human trials, may potentially lead to recommendation of these extracts for therapeutic use.


Assuntos
Antibacterianos , Citrus , Testes de Sensibilidade Microbiana , Extratos Vegetais , Punica granatum , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Punica granatum/química , Citrus/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Sinergismo Farmacológico , Antifúngicos/farmacologia , Antifúngicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
16.
Polymers (Basel) ; 16(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000769

RESUMO

Microbial contamination can occur on the surfaces of blow-molded bottles, necessitating the development and application of effective anti-microbial treatments to mitigate the hazards associated with microbial growth. In this study, new methods of incorporating anti-microbial particles into linear low-density polyethylene (LLDPE) extrusion blow-molded bottles were developed. The anti-microbial particles were thermally embossed on the external surface of the bottle through two particle deposition approaches (spray and powder) over the mold cavity. The produced bottles were studied for their thermal, mechanical, gas barrier, and anti-microbial properties. Both deposition approaches indicated a significant enhancement in anti-microbial activity, as well as barrier properties, while maintaining thermal and mechanical performance. Considering both the effect of anti-microbial agents and variations in tensile bar weight and thickness, the statistical analysis of the mechanical properties showed that applying the anti-microbial agents had no significant influence on the tensile properties of the blow-molded bottles. The external fixation of the particles over the surface of the bottles would result in optimum anti-microbial activity, making it a cost-effective solution compared to conventional compounding processing.

17.
Sci Total Environ ; 949: 175032, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059657

RESUMO

Although the effects of plants on soil properties are well known, the effects of distance from plant roots to root-free soil on soil properties and associated soil organisms are much less studied. Previous research on the effects of distance from a plant explored specific soil organisms and properties, however, comparative studies across a wide range of plant-associated organisms and multiple model systems are lacking. We conducted a controlled greenhouse experiment using soil from two contrasting habitats. Within each soil type, we cultivated two plant species, individually and in combination, studying soil organisms and properties in the root centre, the root periphery, and the root-free zones. We showed that the distance from the cultivated plant (representing decreasing amount of plant roots) had a significant impact on the abiotic properties of the soil (pH and available P and N) and also on the composition of the fungal, bacterial, and nematode communities. The specific patterns, however, did not always match our expectations. For example, there was no significant relationship between the abundance of fungal pathogens and the distance from the cultivated plant compared to a strong decrease in the abundance of arbuscular mycorrhizal fungi. Changes in soil chemistry along the distance from the cultivated plant were probably one of the important drivers that affected bacterial communities. The abundance of nematodes also decreased with distance from the cultivated plant, and the rate of their responses reflected the distribution of their food sources. The patterns of soil changes along the gradient from plant to root-free soil were largely similar in two contrasting soil types and four plant species or their mixtures. This suggests that our results can be generalised to other systems and contribute to a better understanding of the mechanisms of soil legacy formation.


Assuntos
Micorrizas , Raízes de Plantas , Microbiologia do Solo , Solo , Solo/química , Micorrizas/fisiologia , Plantas , Animais , Biota , Ecossistema , Nematoides/fisiologia
18.
Sci Total Environ ; 949: 175086, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39074748

RESUMO

Thinning-a widely used forest management practice-can significantly influence soil nitrogen (N) cycling processes in subtropical forests. However, the effects of different thinning intensities on nitrification, denitrification, and their relationships with soil properties and microbial communities remain poorly understood. Here, we conducted a study in a subtropical forest in China and applied three thinning treatments, i.e., no thinning (0 %), intermediate thinning (10-15 %), and heavy thinning (20-25 %), and investigated the effects of thinning intensity on the potential nitrification rate (PNR), potential denitrification rate (PDR), and microbial communities. Moreover, we explored the relationships among soil physicochemical properties, microbial community structure, and nitrogen transformation rates under different thinning intensities. Our results showed that intermediate and heavy thinning significantly increased the PNR by 87 % and 61 % and decreased the PDR by 31 % and 50 % compared to that of the control, respectively. Although the bacterial community structure was markedly influenced by thinning, the fungal community structure remained stable. Importantly, changes in microbial community composition and diversity had minimal impacts on the nitrogen transformation processes, whereas soil physicochemical properties, such as pH, organic carbon content, and nitrogen forms, were identified as the primary drivers. These findings highlight the critical role of managing soil physicochemical properties to regulate nitrogen transformations in forest soils. Effective forest management should focus on precisely adjusting the thinning intensity to enhance the soil physicochemical conditions, thereby promoting more efficient nitrogen cycling and improving forest ecosystem health in subtropical regions.


Assuntos
Florestas , Nitrificação , Nitrogênio , Microbiologia do Solo , Solo , Nitrogênio/análise , Solo/química , China , Agricultura Florestal/métodos , Desnitrificação , Microbiota , Ciclo do Nitrogênio , Monitoramento Ambiental
19.
Sci Rep ; 14(1): 16606, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025936

RESUMO

The agronomic use of compost and biochar as soil amendments may exhibit contrasting results in terms of soil fertility and plant nutrition. The effects of the biennial application of biochar, compost and a blend of compost:biochar (90:10; % dw:dw) on the agronomical performance of an organically managed and well established 25-year-old olive orchard was assessed 5 years after the initial application. The agronomical evaluation was based on the assessment of the soil physical, chemical, and biological characteristics, and the assessment of the soil fertility by both crop production and nutritional status of the orchard, and the bioassay with olive plantlets. Biochar mainly benefited the physical properties (bulk density, total porosity, aeration, water retention capacity) of soil, especially in the top 0-5 cm. Compost and its blend with biochar improved microbial activity, soil nutritional status (increasing the content of soluble organic C, N, and P) and favoured the formation of aggregates in soil. The bioassay conducted with young plantlets confirmed the enhanced soil fertility status in the three amended treatments, particularly in the case of biochar and its blend with compost. However, this effect was not significantly observed in the adult plants after 5 years of application, reflecting the slow response of adult olive trees to changes in fertilization. Based on these results, alongside the desirable long-residence time of biochar in soil and the ready availability of compost, the blend of biochar with compost assayed in this study is defined as a valid strategy for preparing high quality soil organic amendments.


Assuntos
Carvão Vegetal , Compostagem , Olea , Solo , Olea/crescimento & desenvolvimento , Solo/química , Compostagem/métodos , Fertilizantes/análise , Agricultura Orgânica/métodos
20.
Sci Total Environ ; 947: 174672, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002582

RESUMO

Tropical forests are sensitive to nitrogen (N) and phosphorus (P) availability, and under nutrient application the variation of soil organic carbon (SOC) preserving mechanism remains to be explored. To reveal the forest-specific SOC preservation via biochemical selection in response to nutrient application, we investigated a monoculture (Acacia plantation) and a multispecies forest both with chronic fertilization in subtropical regions, and measured specific fingerprints of plant- and microbial-derived C compounds. In addition, to quantify the effect of P application on SOC content among tropical forests, we conducted a meta-analysis by compiling 125 paired measurements in field experiments from 62 studies. In our field experiment, microbial community composition and activity mediated forest-specific responses of SOC compounds to P addition. The shift of community composition from fungi towards Gram-positive bacteria in the Acacia plantation by P addition led to the consumption of microbial residual C (MRC) as C source; in comparison, P addition increased plant species with less complex lignin substrates and induced microbial acquisition for N sources, thus stimulated the decomposition of both plant- and microbial-derived C. Same with our field experiment, bulk SOC content had neutral response to P addition among tropical forests in the meta-analysis, although divergences could happen among experimental durations and secondary tree species. Close associations among SOC compounds with biotic origins and mineral associated organic C (MAOC) in the multispecies forest suggested contributions of both plant- and microbial-derive C to SOC stability. Regarding that fungal MRC closely associated with MAOC and consisted of soil N pool which tightly coupled to SOC pool, the reduce of fungal MRC by chronic P addition was detrimental to SOC accumulation and stability in tropical forests.


Assuntos
Carbono , Florestas , Fósforo , Microbiologia do Solo , Solo , Fósforo/análise , Solo/química , Carbono/análise , Fertilizantes/análise , Clima Tropical , Nitrogênio/análise , Árvores , Agricultura/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA