Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(2): e0173923, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38240563

RESUMO

Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.


Assuntos
Fungicidas Industriais , Microbiota , Praguicidas , Abelhas , Animais , Fungicidas Industriais/toxicidade , Praguicidas/toxicidade , Nitrilas
2.
J Basic Microbiol ; 64(1): 42-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37612794

RESUMO

Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R. solanacearum colony. In the beginning, twitching motility in the microcolonies was observed as a density-dependent phenomenon that influences the shape of the microcolonies. No such phenomenon was observed in Escherichia coli, where twitching motility is absent. In the early phase of colony growth, twitching motility exhibited by the cells at the peripheral region of the colony was more prominent than the cells toward the center of the colony. Using time-lapse photography and merging the obtained photomicrographs into a video, twitching motility was observed as an intermittent phenomenon that progresses in layers in all directions as finger-like projections at the peripheral region of a bacterial colony. Each layer of bacteria twitches on top of the other and produces a multilayered film-like appearance. We found that the duration between the emergence of each layer diminishes progressively as the colony becomes older. This study on twitching motility demonstrates distinctly heterogeneity among the cells within a colony regarding their dynamics and the influence of microcolonies on each other regarding their morphology.


Assuntos
Ralstonia solanacearum , Fímbrias Bacterianas , Virulência , Doenças das Plantas/microbiologia
3.
FEMS Microbiol Rev ; 47(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37656883

RESUMO

In vitro biofilms are communities of microbes with unique features compared to individual cells. Biofilms are commonly characterized by physical traits like size, adhesion, and a matrix made of extracellular substances. They display distinct phenotypic features, such as metabolic activity and antibiotic tolerance. However, the relative importance of these traits depends on the environment and bacterial species. Various mechanisms enable biofilm-associated bacteria to withstand antibiotics, including physical barriers, physiological adaptations, and changes in gene expression. Gene expression profiles in biofilms differ from individual cells but, there is little consensus among studies and so far, a 'biofilm signature transcriptome' has not been recognized. Additionally, the spatial and temporal variability within biofilms varies greatly depending on the system or environment. Despite all these variable conditions, which produce very diverse structures, they are all noted as biofilms. We discuss that clinical biofilms may differ from those grown in laboratories and found in the environment and discuss whether the characteristics that are commonly used to define and characterize biofilms have been shown in infectious biofilms. We emphasize that there is a need for a comprehensive understanding of the specific traits that are used to define bacteria in infections as clinical biofilms.


Assuntos
Adaptação Fisiológica , Antibacterianos , Farmacorresistência Bacteriana , Biofilmes , Fenótipo
4.
Microorganisms ; 11(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37512855

RESUMO

Improving the management of children with asthma associated with mycoplasma infection is important. Aim: To study the duration of the persistence of antigens, and DNA in a free state, in the structures of circulating immune complexes (CICs) and living cells of Mycoplasma pneumoniae (Mpn) and Mycoplasma hominis (Mh) in children with asthma. In total, 205 children with asthma from 1 to 14 years were observed. The reaction of aggregate-hemagglutination (AHAA), the direct immunofluorescence reaction (DIF), the reaction of the polymerase chain reaction (PCR), and the culture method were used. In addition, 47 children were re-examined 1.5 months after the treatment of mycoplasma infection with azithromycin. The number of samples positive for antigens and DNA in the free state and in the structures of CICs significantly decreased. Then, 50 blood serum samples containing Mh antigens, and 50 samples containing Mpn antigens were analyzed by culture method. Mh was isolated in 21 (65.5%) of 32 samples containing DNA. Mpn was isolated from antigen-positive samples in nine cases. The presented data indicate the long-term persistence of antigens, and DNA of mycoplasma cells in the free state, in the structure of CICs, as well as in the form of "microcolonies". A high level of CICs can be used to predict the course of the disease and the response to therapy.

5.
Am J Bot ; 110(6): e16165, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071779

RESUMO

PREMISE: Many flowering plants depend on insects for pollination and thus attract pollinators by offering rewards, mostly nectar and pollen. Bee pollinators rely on pollen as their main nutrient source. Pollen provides all essential micro- and macronutrients including substances that cannot be synthesized by bees themselves, such as sterols, which bees need for processes such as hormone production. Variations in sterol concentrations may consequently affect bee health and reproductive fitness. We therefore hypothesized that (1) these variations in pollen sterols affect longevity and reproduction in bumble bees and (2) can thus be perceived via the bees' antennae before consumption. METHODS: We studied the effect of sterols on longevity and reproduction of Bombus terrestris workers in feeding experiments and investigated sterol perception using chemotactile proboscis extension response (PER) conditioning. RESULTS: Workers could perceive several sterols (cholesterol, cholestenone, desmosterol, stigmasterol, ß-sitosterol) via their antennae but not differentiate between them. However, when sterols were presented in pollen, and not as a single compound, the bees were unable to differentiate between pollen differing in sterol content. Additionally, different sterol concentrations in pollen neither affected pollen consumption nor brood development or worker longevity. CONCLUSIONS: Since we used both natural concentrations and concentrations higher than those found in pollen, our results indicate that bumble bees may not need to pay specific attention to pollen sterol content beyond a specific threshold. Naturally encountered concentrations might fully support their sterol requirements and higher concentrations do not seem to have negative effects.


Assuntos
Fitosteróis , Abelhas , Animais , Reprodução , Esteróis , Pólen , Percepção
6.
Bull Exp Biol Med ; 173(4): 437-440, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36058982

RESUMO

Mycoplasma hominis is an opportunistic human pathogen that causes acute and chronic infections of the urogenital tract. A new form of M. hominis colonies (microcolonies) was isolated, that differed from typical colonies by morphology, size, growth rate, and resistance to unfavorable factors, in particular, to antibiotics. The formation of microcolonies is associated with a switch in energy metabolism towards nucleoside utilization, which leads to a decrease in energy production and a transition to a persistor-like state. Typical and microcolony cultures of M. hominis H-34 were obtained and a comparative analysis of their adhesive-invasive potential, morphology, and size was carried out. It was shown that both typical and microcolonies can effectively attach and penetrate into HeLa cells. Unlike microcolonies, the morphology and size of cells in typical colonies change significantly after HeLa infection. This indicates functional changes in cells of typical colonies during infection.


Assuntos
Infecções por Mycoplasma , Mycoplasma hominis , Adesivos , Antibacterianos , Células HeLa , Humanos , Nucleosídeos
7.
J Bacteriol ; 204(4): e0003122, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35357162

RESUMO

The canonical function of a bacterial sigma (σ) factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the σ54 factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the σ54-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation. Different activator ATPases couple diverse environmental cues to the σ54-RNAP to mediate adaptive changes in gene expression. Hence, the genes that rely upon σ54 for their transcription have a wide range of different functions suggesting that the repertoire of functions performed by genes, directly or indirectly affected by σ54, is not yet exhaustive. By comparing the growth patterns of prototypical enteropathogenic, uropathogenic, and nonpathogenic Escherichia coli strains devoid of σ54, we uncovered that the absence of σ54 results in two differently sized colonies that appear at different times specifically in the uropathogenic E. coli (UPEC) strain. Notably, UPEC bacteria devoid of individual activator ATPases of the σ54-RNAP do not phenocopy the σ54 mutant strain. Thus, it seems that σ54's role as a determinant of uniform colony appearance in UPEC bacteria represents a putative non-canonical function of σ54 in regulating genetic information flow. IMPORTANCE RNA synthesis is the first step of gene expression. The multisubunit RNA polymerase (RNAP) is the central enzyme responsible for RNA synthesis in bacteria. The dissociable sigma (σ) factor subunit directs the RNAP to different sets of genes to allow their expression in response to various cellular needs. Of the seven σ factors in Escherichia coli and related bacteria, σ54 exists in a class of its own. This study has uncovered that σ54 is a determinant of the uniform growth of uropathogenic E. coli on solid media. This finding suggests a role for this σ54 in gene regulation that extends beyond its known function as an RNAP gene specificity factor.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Uropatogênica , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , RNA , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo
8.
Appl Environ Microbiol ; 88(4): e0228321, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191778

RESUMO

Most microorganisms exist in biofilms, which comprise aggregates of cells surrounded by an extracellular matrix that provides protection from external stresses. Based on the conditions under which they form, biofilm structures vary in significant ways. For instance, biofilms that develop when microbes are incubated under static conditions differ from those formed when microbes encounter the shear forces of a flowing liquid. Moreover, biofilms develop dynamically over time. Here, we describe a cost-effective coverslip holder, printed with a three-dimensional (3D) printer, that facilitates surface adhesion assays under a broad range of standing and shaking culture conditions. This multipanel adhesion (mPAD) mount further allows cultures to be sampled at multiple time points, ensuring consistency and comparability between samples and enabling analyses of the dynamics of biofilm formation. As a proof of principle, using the mPAD mount for shaking, oxic cultures, we confirm previous flow chamber experiments showing that the Pseudomonas aeruginosa wild-type strain and a phenazine deletion mutant (Δphz) strain form biofilms with similar structure but reduced density in the mutant strain. Extending this analysis to anoxic conditions, we reveal that microcolony formation and biofilm formation can only be observed under shaking conditions and are decreased in the Δphz mutant compared to wild-type cultures, indicating that phenazines are crucial for the formation of biofilms if oxygen as an electron acceptor is unavailable. Furthermore, while the model archaeon Haloferax volcanii does not require archaella for surface attachment under static conditions, we demonstrate that an H. volcanii mutant that lacks archaella is impaired in early stages of biofilm formation under shaking conditions. IMPORTANCE Due to the versatility of the mPAD mount, we anticipate that it will aid the analysis of biofilm formation in a broad range of bacteria and archaea. Thereby, it contributes to answering critical biological questions about the regulatory and structural components of biofilm formation and understanding this process in a wide array of environmental, biotechnological, and medical contexts.


Assuntos
Biofilmes , Técnicas Microbiológicas , Células Procarióticas , Análise Custo-Benefício , Haloferax volcanii , Técnicas Microbiológicas/métodos , Células Procarióticas/fisiologia , Pseudomonas aeruginosa
9.
J Med Microbiol ; 71(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35037614

RESUMO

Introduction. Mycoplasma hominis is a bacterium belonging to the class Mollicutes. It causes acute and chronic infections of the urogenital tract. The main features of this bacterium are an absence of cell wall and a reduced genome size (517-622 protein-encoding genes). Previously, we have isolated morphologically unknown M. hominis colonies called micro-colonies (MCs) from the serum of patients with inflammatory urogenital tract infection.Hypothesis. MCs are functionally different from the typical colonies (TCs) in terms of metabolism and cell division.Aim. To determine the physiological differences between MCs and TCs of M. hominis and elucidate the pathways of formation and growth of MCs by a comparative proteomic analysis of these two morphological forms.Methodology. LC-MS proteomic analysis of TCs and MCs using an Ultimate 3000 RSLC nanoHPLC system connected to a QExactive Plus mass spectrometer.Results. The study of the proteomic profiles of M. hominis colonies allowed us to reconstruct their energy metabolism pathways. In addition to the already known pentose phosphate and arginine deamination pathways, M. hominis can utilise ribose phosphate and deoxyribose phosphate formed by nucleoside catabolism as energy sources. Comparative proteomic HPLC-MS analysis revealed that the proteomic profiles of TCs and MCs were different. We assume that MC cells preferably utilised deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Utilisation of deoxyribonucleosides is less efficient as compared with that of ribonucleosides and arginine in terms of energy production. Thymidine phosphorylase DeoA is one of the key enzymes of deoxyribonucleosides utilisation. We obtained a DeoA overexpressing mutant that exhibited a phenotype similar to that of MCs, which confirmed our hypothesis.Conclusion. In addition to the two known pathways for energy production (arginine deamination and the pentose phosphate pathway) M. hominis can use deoxyribonucleosides and ribonucleosides. MC cells demonstrate a reorganisation of energy metabolism: unlike TC cells, they preferably utilise deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Thus MC cells enter a state of energy starvation, which helps them to survive under stress, and in particular, to be resistant to antibiotics.


Assuntos
Mycoplasma hominis , Proteoma , Timidina/metabolismo , Arginina , Humanos , Infecções por Mycoplasma , Mycoplasma hominis/genética , Mycoplasma hominis/metabolismo , Fenótipo , Fosfatos , Ribonucleosídeos
10.
J Invertebr Pathol ; 188: 107716, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35031296

RESUMO

The toheroa (Paphies ventricosa) is endemic to Aotearoa (New Zealand). Following decades of overfishing in the 1900 s, commercial and recreational fishing of toheroa is now prohibited. For unknown reasons, protective measures in place for over 40 years have not ensured the recovery of toheroa populations. For the first time, a systematic pathology survey was undertaken to provide a baseline of toheroa health in remaining major populations. Using histopathology, parasites and pathologies in a range of tissues are assessed and quantified spatio-temporally. Particular focus is placed on intracellular microcolonies of bacteria (IMCs). Bayesian ordinal logistic regression is used to model IMC infection and several facets of toheroa health. Model outputs show condition to be the most important predictor of IMC intensity in toheroa tissues. The precarious state of many toheroa populations around Aotearoa should warrant greater attention from scientists, conservationists, and regulators. It is hoped that this study will provide some insight into the current health status of a treasured and iconic constituent of several expansive surf beaches in Aotearoa.


Assuntos
Bivalves , Aranhas , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , Pesqueiros , Nova Zelândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA