Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Food Chem X ; 23: 101627, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100244

RESUMO

The effects of adding cochineal carmine and annatto dyes in five mortadella formulations made with curcumin microcrystals were compared, and the preference was evaluated and described sensorially. Based on the optimized formulation obtained with color parameters, two formulations were elaborated: curcumin microcrystals and cochineal carmine were added. During 60 days, pH, objective color, water retention capacity, lipid oxidation, and texture profile analyses were performed. The results demonstrate the possibility of excluding sodium erythorbate from formulations containing curcumin microcrystals. There was no significant difference in lipid oxidation between the samples, presenting at the end of 60 days a value of 0.11 mg and 0.10 mg of MDA kg-1 for the two samples, respectively. There were also no significant differences between the two samples or the evaluated storage times, and the average values obtained for pH, WRC, objective color, and TPA were expected for this type of cooked meat sausage. In the presence of curcumin microcrystals, the synthetic antioxidant, sodium erythorbate, can be eliminated from the formulations, as it does not affect the physical-chemical parameters studied, such as pH, water retention capacity, color objective, and texture profile.

2.
Carbohydr Polym ; 343: 122446, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174087

RESUMO

The spontaneous formation of cyclodextrin (CD)-oil inclusion complexes (ICs) and their further growth into patterned crystals present a bottom-up route to the fabrication of periodic macroscopic structure. Although the inclusion processes are well established for the molecules, understanding intermediate structures during the crystal growth and emerging of persistent crystalline order has been lacking. Here we build a hierarchy of oriented micro/nanostructures of CD-oil ICs in solution by choosing different oil guests including several straight-chain alkanes of C12, C14 and C16, oleic acid (OA), glycerol trioleate (TG) and soybean oil (SO), in an attempt to reveal the roles of oil guests in the formation of their crystallites. Remarkably, the ICs tend to grow into clusters and terminate at a certain finite size as long columns or lamella plates with well-defined facets, dependent on the type of oil used. For the first time, we report a non-equilibrium growth of crystallites with surface faceting directed by the guests by means of Arching and Bundling.

3.
IUCrJ ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39072424

RESUMO

Structure-based drug design is highly dependent on the availability of structures of the protein of interest in complex with lead compounds. Ideally, this information can be used to guide the chemical optimization of a compound into a pharmaceutical drug candidate. A limitation of the main structural method used today - conventional X-ray crystallography - is that it only provides structural information about the protein complex in its frozen state. Serial crystallography is a relatively new approach that offers the possibility to study protein structures at room temperature (RT). Here, we explore the use of serial crystallography to determine the structures of the pharmaceutical target, soluble epoxide hydrolase. We introduce a new method to screen for optimal microcrystallization conditions suitable for use in serial crystallography and present a number of RT ligand-bound structures of our target protein. From a comparison between the RT structural data and previously published cryo-temperature structures, we describe an example of a temperature-dependent difference in the ligand-binding mode and observe that flexible loops are better resolved at RT. Finally, we discuss the current limitations and potential future advances of serial crystallography for use within pharmaceutical drug discovery.

4.
Small Methods ; : e2400768, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923854

RESUMO

Organometallic lead halide perovskite powders have gained widespread attention for their intriguing properties, showcasing remarkable performance in the optoelectronic applications. In this study, formamidinium lead iodide (α-FAPbI3) microcrystals (MCs) is synthesized using retrograde solubility-driven crystallization. Additionally, methylammonium lead bromide (MAPbBr3) and cesium lead iodide (δ-CsPbI3) MCs are prepared through a sonochemical process, employing low-grade PbX2 (X = I & Br) precursors and an eco-friendly green solvent (γ-Valerolactone). The study encompasses an analysis of the structural, optical, thermal, elemental, and morphological characteristics of FAPbI3, MAPbBr3, and CsPbI3 MCs. Upon analysing phase stability, a phase transition in FAPbI3 MCs is observed after 2 weeks. To address this issue, a powder-based mechanochemical method is employed to synthesize stable mixed cation perovskite powders (MCPs) by subjecting FAPbI3 and MAPbBr3 MCs with varying concentrations of CsPbI3. Furthermore, the performance of mixed cation perovskites are examined using the Solar Cell Capacitance Simulator (SCAPS-1D) software. The impact of cesium incorporation in the photovoltaic characteristics is elucidated. All mixed cation absorbers exhibited optimal device performance with a thickness ranging between 0.6-1.5 µm. It's worth noting that the MCPs exhibit impressive ambient stability, remaining structurally intact and retaining their properties without significant degradation for 70 days of ambient exposure.

5.
Carbohydr Polym ; 337: 122142, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710551

RESUMO

The growth of cyclodextrin inclusion complexes (ICs) on oil/water interfaces represents a beautiful example of spontaneous pattern formation in nature. How the supramolecules evolve remains a challenge because surface confinement can frustrate microcrystal growth and give rise to unusual phase transitions. Here we investigate the self-assembly of ICs on droplet surfaces using microfluidics, which allows directly visualizing packing, wetting and ordering of the microcrystals anchored on the surface. The oil guests of distinct molecular structures can direct the assembly of the ICs and largely affect anchoring dynamics of the ICs microcrystals, leading to a range of behaviors including orientating, slipping, buckling, jamming, or merging. We discuss the behaviors observed in terms of the flexibility of the building blocks, which offers a new degree of freedom through which to tailor their properties and gives rise to a striking feature of anchoring patterns that have no counterpart in normal colloidal crystals.

6.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611780

RESUMO

This study investigates the synthesis of mesophase pitch using low-cost fluid catalytic cracking (FCC) slurry and waste fluid asphaltene (WFA) as raw materials through the co-carbonization method. The resulting mesophase pitch product and its formation mechanism were thoroughly analyzed. Various characterization techniques, including polarizing microscopy, softening point measurement, Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were employed to characterize and analyze the properties and structure of the mesophase pitch. The experimental results demonstrate that the optimal optical texture of the mesophase product is achieved under specific reaction conditions, including a temperature of 420 °C, pressure of 1 MPa, reaction time of 6 h, and the addition of 2% asphaltene. It was observed that a small amount of asphaltene contributes to the formation of mesophase pitch spheres, facilitating the development of the mesophase. However, excessive content of asphaltene may cover the surface of the mesophase spheres, impeding the contact between them and consequently compromising the optical texture of the mesophase pitch product. Furthermore, the inclusion of asphaltene promotes polymerization reactions in the system, leading to an increase in the average molecular weight of the mesophase pitch. Notably, when the amount of asphaltene added is 2%, the mesophase pitch demonstrates the lowest ID/IG value, indicating superior molecular orientation and larger graphite-like microcrystals. Additionally, researchers found that at this asphaltene concentration, the mesophase pitch exhibits the highest degree of order, as evidenced by the maximum diffraction angle (2θ) and stacking height (Lc) values, and the minimum d002 value. Moreover, the addition of asphaltene enhances the yield and aromaticity of the mesophase pitch and significantly improves the thermal stability of the resulting product.

7.
Protein Sci ; 33(4): e4957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501509

RESUMO

The human NQO1 (hNQO1) is a flavin adenine nucleotide (FAD)-dependent oxidoreductase that catalyzes the two-electron reduction of quinones to hydroquinones, being essential for the antioxidant defense system, stabilization of tumor suppressors, and activation of quinone-based chemotherapeutics. Moreover, it is overexpressed in several tumors, which makes it an attractive cancer drug target. To decipher new structural insights into the flavin reductive half-reaction of the catalytic mechanism of hNQO1, we have carried serial crystallography experiments at new ID29 beamline of the ESRF to determine, to the best of our knowledge, the first structure of the hNQO1 in complex with NADH. We have also performed molecular dynamics simulations of free hNQO1 and in complex with NADH. This is the first structural evidence that the hNQO1 functional cooperativity is driven by structural communication between the active sites through long-range propagation of cooperative effects across the hNQO1 structure. Both structural results and MD simulations have supported that the binding of NADH significantly decreases protein dynamics and stabilizes hNQO1 especially at the dimer core and interface. Altogether, these results pave the way for future time-resolved studies, both at x-ray free-electron lasers and synchrotrons, of the dynamics of hNQO1 upon binding to NADH as well as during the FAD cofactor reductive half-reaction. This knowledge will allow us to reveal unprecedented structural information of the relevance of the dynamics during the catalytic function of hNQO1.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Cristalografia , Temperatura , NAD , Antineoplásicos/química , Flavinas , Cristalografia por Raios X , NAD(P)H Desidrogenase (Quinona)
8.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 279-288, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488731

RESUMO

A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization.


Assuntos
Síncrotrons , Cristalografia por Raios X , Cristalização/métodos , Coleta de Dados
9.
Colloids Surf B Biointerfaces ; 237: 113855, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513298

RESUMO

Local drug delivery has been exploited recently to treat hearing loss, as this method can both bypass the blood-labyrinth barrier and provide sustained drug release. Combined drug microcrystals (MCs) offer additional advantages for sensorineural hearing loss treatment via intratympanic (IT) injection due to their shape effect and combination strategy. In this study, to endow viscous effects of hydrogels, nonspherical dexamethasone (DEX) and lipoic acid (LA) MCs were incorporated into silk fibroin (SF) hydrogels, which were subsequently administered to the tympanic cavity to investigate their pharmaceutical properties. First, we prepared DEX and LA MCs by a traditional precipitation technique followed by SF hydrogel incorporation (SF+DEX+LA). After characterization of the physicochemical features, including morphology, rheology, and dissolution, both a suspension of combined DEX and LA MCs (DEX+LA) and SF+DEX+LA were administered to guinea pigs by IT injection, after which the pharmacokinetics, biodegradation and biocompatibility were evaluated. To our surprise, compared to the DEX+LA group, the pharmacokinetics of the SF+DEX+LA hydrogel group did not improve significantly, which may be ascribed to their nonspherical shape and deposition effects of the drugs MCs. The cochlear tissue in each group displayed good morphology, with no obvious inflammatory reactions. This combined MC suspension has the clear advantages of no vehicle, easy scale-up preparation, and good biocompatibility and outcomes, which paves the way for practical treatment of hearing loss via local drug delivery.


Assuntos
Orelha Interna , Fibroínas , Perda Auditiva , Ácido Tióctico , Animais , Cobaias , Hidrogéis/química , Ácido Tióctico/farmacologia , Dexametasona , Seda/metabolismo , Orelha Interna/metabolismo , Perda Auditiva/tratamento farmacológico , Perda Auditiva/metabolismo , Fibroínas/farmacologia
10.
Nanotechnology ; 35(18)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271736

RESUMO

Tunable composition of perovskite micro/nanostructures are perfect candidate for the designing of multifunctional optoelectronic circuits. Especially, integrated polychromatic luminescence based on the perovskite materials along a single substrate or chip is essential to the integrated photonic devices and multicolor displays. Here, we reported a synthesis of composition tunable CsPbI3(1-x)Br3x(X = 0.65-0.9) perovskite microstructures on a single substrate via a magnetic-pulling CVD method. The PL emissions can be changed gradually from green (558 nm, 2.23 eV) to red (610 nm, 2.03 eV) under a focused 375 nm laser illumination. Furthermore, these composition-graded alloyed perovskite microcrystals show stable emissions after six months in air, which may find applications in multicolor display and broad band light sources in the future.

11.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276610

RESUMO

In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.

12.
Adv Sci (Weinh) ; 11(6): e2307543, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070176

RESUMO

In order to deal with the global energy crisis and environmental problems, reducing carbon dioxide through artificial photosynthesis has become a hot topic. Lead halide perovskite is attracted people's attention because of its excellent photoelectric properties, but the toxicity and long-term instability prompt people to search for new photocatalysts. Herein, a series of <111> inorganic double perovskites Cs4 Mn1-x Cux Sb2 Cl12 microcrystals (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) are synthesized and characterized. Among them, Cs4 Mn0.7 Cu0.3 Sb2 Cl12 microcrystals have the best photocatalytic performance, and the yields of CO and CH4 are 503.86 and 68.35 µmol g-1 , respectively, after 3 h irradiation, which are the highest among pure phase perovskites reported so far. In addition, in situ Fourier transform infrared (FT-IR) spectroscopy and electron spin resonance (ESR) spectroscopy are used to explore the mechanism of the photocatalytic reaction. The results highlight the potential of this class of materials for photocatalytic reduction reactions.

13.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003524

RESUMO

Currently, X-ray crystallography, which typically uses synchrotron sources, remains the dominant method for structural determination of proteins and other biomolecules. However, small protein crystals do not provide sufficiently high-resolution diffraction patterns and suffer radiation damage; therefore, conventional X-ray crystallography needs larger protein crystals. The burgeoning method of serial crystallography using X-ray free-electron lasers (XFELs) avoids these challenges: it affords excellent structural data from weakly diffracting objects, including tiny crystals. An XFEL is implemented by irradiating microjets of suspensions of microcrystals with very intense X-ray beams. However, while the method for creating microcrystalline microjets is well established, little attention is given to the growth of high-quality nano/microcrystals suitable for XFEL experiments. In this study, in order to assist the growth of such crystals, we calculate the mean crystal size and the time needed to grow crystals to the desired size in batch crystallization (the predominant method for preparing the required microcrystalline slurries); this time is reckoned theoretically both for microcrystals and for crystals larger than the upper limit of the Gibbs-Thomson effect. The impact of the omnipresent impurities on the growth of microcrystals is also considered quantitatively. Experiments, performed with the model protein lysozyme, support the theoretical predictions.


Assuntos
Elétrons , Síncrotrons , Raios X , Cristalografia por Raios X , Proteínas , Lasers
14.
Nano Converg ; 10(1): 53, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971675

RESUMO

Wound treatment requires a plethora of independent properties. Hydration, anti-bacterial properties, oxygenation and patient-specific drug delivery all contribute to the best possible wound healing. Three-dimensional (3D) printing has emerged as a set of techniques to realize individually adapted wound dressings with open porous structure from biomedically optimized materials. To include all the desired properties into the so-called bioinks is still challenging. In this work, a bioink system based on anti-bacterial zinc oxide tetrapods (t-ZnO) and biocompatible sodium alginate is presented. Additive manufacturing of these hydrogels with high t-ZnO content (up to 15 wt.%) could be realized. Additionally, protein adsorption on the t-ZnO particles was evaluated to test their suitability as carriers for active pharmaceutical ingredients (APIs). Open porous and closed cell printed wound dressings were tested for their cell and skin compatibility and anti-bacterial properties. In these categories, the open porous constructs exhibited protruding t-ZnO arms and proved to be anti-bacterial. Dermatological tests on ex vivo skin showed no negative influence of the alginate wound dressing on the skin, making this bioink an ideal carrier and evaluation platform for APIs in wound treatment and healing.

15.
Polymers (Basel) ; 15(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38006187

RESUMO

Biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polylactide (PLA) and poly (butylene succinate) (PBS) are particularly noteworthy because of their excellent biodegradability. However, the drawbacks of their mechanical properties prompts the need to compound them to achieve the desired strength. The characteristics of the interface of the composite material determine the realization of its final performance. The study of the interface and microstructure of composites is essential for the development of products from degradable polymers. The morphology evolution and microcrystal structure of spin-casted fully biodegradable (PLA/PBS) blend films were investigated using atomic force microscopy (AFM)-based nanomechanical mapping. Results show that intact blend films present an obvious phase separation, where the PBS phase is uniformly dispersed in the PLA phase in the form of pores. Furthermore, the size and number of the PBS phase have a power exponential relationship and linear relationship with PBS loading, respectively. Intriguingly, after annealing at 80 °C for 30 min, the PLA phase formed an orderly petal-like microcrystalline structure centered on the PBS phase. Moreover, the microcrystalline morphology changed from a "daisy type" to a "sunflower type" with the increased size of the PBS phase. Since the size of the PBS phase is controllable, a new method for preparing microscopic patterns using fully biodegradable polymers is proposed.

16.
Small ; 19(42): e2303349, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37312646

RESUMO

Conductive biomass carbon possesses unique properties of excellent conductivity and outstanding thermal stability, which can be widely used as conductive additive. However, building the high-dense conductive biomass carbon with highly graphitized microcrystals at a lower carbonization temperature is still a major challenge because of structural disorder and low crystallinity of source material. Herein, a simple capillary evaporation method to efficiently build the high-dense conductive ramie carbon (hd-CRC) with the higher tap density of 0.47 cm3 g-1 than commercialized Super-C45 (0.16 cm3 g-1 ) is reported. Such highly graphitized microcrystals of hd-CRC can achieve the high electrical conductivity of 94.55 S cm-1 at the yield strength of 92.04 MPa , which is higher than commercialized Super-C45 (83.92 S cm-1 at 92.04 MPa). As a demonstration, hd-CRC based symmetrical supercapacitors possess a highly volumetric energy density of 9.01 Wh L-1 at 25.87 kW L-1 , much more than those of commercialized Super-C45 (5.06 Wh L-1 and 19.30 kW L-1 ). Remarkably, the flexible package supercapacitor remarkably presents a low leakage current of 10.27 mA and low equivalent series resistance of 3.93 mΩ. Evidently, this work is a meaningful step toward high-dense conductive biomass carbon from traditional biomass graphite carbon, greatly promoting the highly-volumetric-performance supercapacitors.

17.
Molecules ; 28(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241954

RESUMO

Rare earth silicate phosphors of high quantum efficiency with a stable performance are promising materials in the fields of display and illumination. The grain sizes of products synthesized via the conventional solid-state reaction method are usually too large to satisfy the requirements of color cast and extraction efficiency in high-resolution light-emitting devices (LEDs). We designed a synthetic route and successfully fabricated rare earth silicate NaGd9Si6O26 (NGSO) sub-microcrystals with a size ranging from 550 to 1200 nm. The reaction mechanism and optical properties were systematically investigated. The quantum efficiency of Eu3+-activated NGSO sub-microcrystals was about 36.6%. The LED encapsulated with these sub-microcrystals showed lower color deviation and higher lumen efficiency and lumen flux compared to that with NGSO fabricated using the conventional solid state reaction method.

18.
IUCrJ ; 10(Pt 4): 430-436, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37223996

RESUMO

In this work, a novel crystal growth method termed suspended drop crystallization has been developed. Unlike traditional methods, this technique involves mixing protein and precipitant directly on an electron microscopy grid without any additional support layers. The grid is then suspended within a crystallization chamber designed in-house, allowing for vapor diffusion to occur from both sides of the drop. A UV-transparent window above and below the grid enables the monitoring of crystal growth via light, UV or fluorescence microscopy. Once crystals have formed, the grid can be removed and utilized for X-ray crystallography or microcrystal electron diffraction (MicroED) directly without having to manipulate the crystals. To demonstrate the efficacy of this method, crystals of the enzyme proteinase K were grown and its structure was determined by MicroED following focused ion beam/scanning electron microscopy milling to render the sample thin enough for cryoEM. Suspended drop crystallization overcomes many of the challenges associated with sample preparation, providing an alternative workflow for crystals embedded in viscous media, sensitive to mechanical stress and/or subject to preferred orientation on electron microscopy grids.


Assuntos
Proteínas , Cristalização/métodos , Proteínas/química , Cristalografia por Raios X , Endopeptidase K , Microscopia Crioeletrônica/métodos
19.
Front Nutr ; 10: 1161232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032777

RESUMO

ß-Cyclodextrin (ß-CD) can combine with oil and other guest molecules to form amphiphilic inclusion complexes (ICs), which can be adsorbed on the oil-water interface to reduce the interfacial tension and stabilize Pickering emulsions. However, the subtle change of ß-CD in the process of emulsion preparation is easily ignored. In this study, ß-CD and ginger oil (GO) were used to prepare the Pickering emulsion by high-speed shearing homogenization without an exogenous emulsifier. The stability of the emulsion was characterized by microscopic observation, staining analysis, and creaming index (CI). Results showed that the flocculation of the obtained Pickering emulsion was serious, and the surface of the droplets was rough with lamellar particles. In order to elucidate the formation process of the layered particles, the GO/ß-CD ICs were further prepared by ball milling method, and the X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and interfacial tension analyses found that ß-CD and GO first formed amphiphilic nanoscale small particles (ICs) through the host-guest interaction, and the formed small particles were further self-assembled into lamellar micron-scale amphiphilic ICs microcrystals. These amphiphilic ICs and microcrystals aggregated at the oil-water interface and finally formed the Pickering emulsion. In this study, by exploring the formation process and evolution of GO/ß-CD self-assembly, the formation process and stabilization mechanism of the ß-CD-stabilized GO Pickering emulsion were clarified preliminarily, with the aim of providing a theoretical basis for the development of high-performance CD-stabilized Pickering emulsions.

20.
Drug Deliv Transl Res ; 13(10): 2639-2652, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37040032

RESUMO

To reduce mucosal damage in the gastrointestinal tract caused by aspirin, aspirin microcrystals were loaded in soluble polymeric microneedle (MN) tips. Aspirin was prepared into aspirin microcrystals by jet milling. Aspirin microcrystals with particle sizes of 0.5-5 µm were loaded on MN tips with a height of 250 µm or 300 µm. The aspirin microcrystals suspended in a polymer solution were concentrated in the MN tips under negative pressure. The aspirin microcrystals had high stability in the MNs since they were not dissolved in solution during the fabrication process. The MN patch packaged in an aluminum-plastic bag containing silica gel desiccant can be stored at 4 °C. The MN tips implanted in the skin of Institute of Cancer Research (ICR) mice dissolved within 30 min. Isolated porcine ear skin was punctured by MNs with heights of 300 µm and 250 µm to depths of 130 µm and 90 µm, respectively. The fluorescent red (FR) release from MNs reached 98.59% within 24 h. The MNs delivered aspirin microcrystals to the epidermis and dermis, providing a smooth plasma concentration in rats. The MNs loaded with aspirin microcrystals did not evoke primary irritation on the dorsal skin of Japanese white rabbits. In summary, MNs loaded with aspirin microcrystals provide a new approach to improve the stability of aspirin in MN patches.


Assuntos
Aspirina , Polímeros , Suínos , Animais , Ratos , Camundongos , Coelhos , Polímeros/química , Pele , Sistemas de Liberação de Medicamentos , Agulhas , Administração Cutânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA