Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Bioelectron Med ; 10(1): 16, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970083

RESUMO

BACKGROUND: Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns. METHODS: This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link. RESULTS: The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 µA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation. CONCLUSIONS: The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation.

2.
Anal Bioanal Chem ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914733

RESUMO

The hormone Neuropeptide Y (NPY) plays critical roles in feeding, satiety, obesity, and weight control. However, its complex peptide structure has hindered the development of fast and biocompatible detection methods. Previous studies utilizing electrochemical techniques with carbon fiber microelectrodes (CFMEs) have targeted the oxidation of amino acid residues like tyrosine to measure peptides. Here, we employ the modified sawhorse waveform (MSW) to enable voltammetric identification of NPY through tyrosine oxidation. Use of MSW improves NPY detection sensitivity and selectivity by reducing interference from catecholamines like dopamine, serotonin, and others compared to the traditional triangle waveform. The technique utilizes a holding potential of -0.2 V and a switching potential of 1.2 V that effectively etches and renews the CFME surface to simultaneously detect NPY and other monoamines with a sensitivity of 5.8 ± 0.94 nA/µM (n = 5). Furthermore, we observed adsorption-controlled, subsecond NPY measurements with CFMEs and MSW. The effective identification of exogenously applied NPY in biological fluids demonstrates the feasibility of this methodology for in vivo and ex vivo studies. These results highlight the potential of MSW voltammetry to enable fast, biocompatible NPY quantification to further elucidate its physiological roles.

3.
Micromachines (Basel) ; 15(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930703

RESUMO

Arsenic contamination poses a significant public health risk worldwide, with chronic exposure leading to various health issues. Detecting and monitoring arsenic exposure accurately remains challenging, necessitating the development of sensitive detection methods. In this study, we introduce a novel approach using fast-scan cyclic voltammetry (FSCV) coupled with carbon-fiber microelectrodes (CFMs) for the electrochemical detection of As3+. Through an in-depth pH study using tris buffer, we optimized the electrochemical parameters for both acidic and basic media. Our sensor demonstrated high selectivity, distinguishing the As3+ signal from those of As5+ and other potential interferents under ambient conditions. We achieved a limit of detection (LOD) of 0.5 µM (37.46 ppb) and a sensitivity of 2.292 nA/µM for bare CFMs. Microscopic data confirmed the sensor's stability at lower, physiologically relevant concentrations. Additionally, using our previously reported double-bore CFMs, we simultaneously detected As3+-Cu2+ and As3+-Cd2+ in tris buffer, enhancing the LOD of As3+ to 0.2 µM (14.98 ppb). To our knowledge, this is the first study to use CFMs for the rapid and selective detection of As3+ via FSCV. Our sensor's ability to distinguish As3+ from As5+ in a physiologically relevant pH environment showcases its potential for future in vivo studies.

4.
Brain Sci ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928612

RESUMO

Cerebral intraparenchymal hemorrhage due to electrode implantation (CIPHEI) is a rare but serious complication of deep brain stimulation (DBS) surgery. This study retrospectively investigated a large single-center cohort of DBS implantations to calculate the frequency of CIPHEI and identify patient- and procedure-related risk factors for CIPHEI and their potential interactions. We analyzed all DBS implantations between January 2013 and December 2021 in a generalized linear model for binomial responses using bias reduction to account for sparse sampling of CIPHEIs. As potential risk factors, we considered age, gender, history of arterial hypertension, level of invasivity, types of micro/macroelectrodes, and implanted DBS electrodes. If available, postoperative coagulation and platelet function were exploratorily assessed in CIPHEI patients. We identified 17 CIPHEI cases across 839 electrode implantations in 435 included procedures in 418 patients (3.9%). Exploration and cross-validation analyses revealed that the three-way interaction of older age (above 60 years), high invasivity (i.e., use of combined micro/macroelectrodes), and implantation of directional DBS electrodes accounted for 82.4% of the CIPHEI cases. Acquired platelet dysfunction was present only in one CIPHEI case. The findings at our center suggested implantation of directional DBS electrodes as a new potential risk factor, while known risks of older age and high invasivity were confirmed. However, CIPHEI risk is not driven by the three factors alone but by their combined presence. The contributions of the three factors to CIPHEI are hence not independent, suggesting that potentially modifiable procedural risks should be carefully evaluated when planning DBS surgery in patients at risk.

5.
J Neural Eng ; 21(4)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885680

RESUMO

Objective.The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents.Approach.We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrOx, Ti, W, PtOx, Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit.Main results.Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types.Significance.This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to bothin vitroandin vivoapplications, offering a resource to the neural engineering community.


Assuntos
Eletrodos Implantados , Microeletrodos , Desenho de Equipamento/métodos , Neuroestimuladores Implantáveis , Estimulação Elétrica/métodos , Estimulação Elétrica/instrumentação
6.
Adv Healthc Mater ; 13(18): e2303872, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837670

RESUMO

Brain-on-Chip devices, which facilitate on-chip cultures of neurons to simulate brain functions, are receiving tremendous attention from both fundamental and clinical research. Consequently, microsensors are being developed to accomplish real-time monitoring of neurotransmitters, which are the benchmarks for neuron network operation. Among these, electrochemical sensors have emerged as promising candidates for detecting a critical neurotransmitter, dopamine. However, current state-of-the-art electrochemical dopamine sensors are suffering from issues like limited sensitivity and cumbersome fabrication. Here, a novel route in monolithically microfabricating vertically aligned carbon nanofiber electrochemical dopamine microsensors is reported with an anti-blistering slow cooling process. Thanks to the microfabrication process, microsensors is created with complete insulation and large surface areas. The champion device shows extremely high sensitivity of 4.52× 104 µAµM-1·cm-2, which is two-orders-of-magnitude higher than current devices, and a highly competitive limit of detection of 0.243 nM. These remarkable figures-of-merit will open new windows for applications such as electrochemical recording from a single neuron.


Assuntos
Carbono , Dopamina , Técnicas Eletroquímicas , Nanofibras , Dopamina/análise , Nanofibras/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
7.
Pest Manag Sci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864543

RESUMO

BACKGROUND: Attract-and-kill (AK) beads are biological, microbial insecticides developed as an alternative to synthetic soil insecticides. For wireworm control, beads are based on calcium alginate/starch co-encapsulating the carbon dioxide (CO2) producing yeast Saccharomyces cerevisiae H205 as the attract component, and the entomopathogenic fungus Metarhizium brunneum CB15-III as the kill component. However, the physicochemical processes inside beads during co-cultivation are still unclear. Here we reveal for the first time the spatiotemporal conditions of oxygen and pH inside AK beads measured with microelectrodes and describe the impact of S. cerevisiae on CO2 and conidia formation. RESULTS: Measurements revealed a steep oxygen gradient already 2 days after co-encapsulation, with an internal hypoxic zone. Encapsulating either S. cerevisiae or M. brunneum already decreased the average pH from 5.5 to 4.7 and 4.6, respectively. However, on day 3, co-cultivation lead to temporal strong acidification of beads down to pH 3.6 which followed the maximum CO2 productivity and coincided with the maximum conidiation rate. Decreasing the yeast load decreased the total CO2 productivity to half, and the conidial production by 93%, while specific productivities normalized to 1% yeast load increased eight-fold and three-fold, respectively, with day 3 being an exception. CONCLUSION: Our findings indicate a general beneficial interaction between M. brunneum and S. cerevisiae, but also suggest competition for resources. These findings will contribute to develop innovative co-formulations with maximum efficiency to save application rates and costs. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38729242

RESUMO

Premature ventricular contraction (PVC) is usually eliminated in the earliest activation site based on the conventional electrode of ablation catheter. However, the large size electrode may contain far-field potential. The QDOT MICRO ablation catheter has three micro electrodes with 0.33 mm electrode length, in addition to the conventional electrode with 3.5 mm electrode length. The micro electrodes can reflect only near-field potential. A 78-year-old with symptomatic frequent PVCs underwent catheter ablation. PVC-1 showed good pace-mapping in distal great cardiac vein (GCV). The local bipolar electrograms in the conventional electrode of ablation catheter preceded the PVC-QRS onset by 32 ms in distal GCV and 13 ms in left coronary cusp (LCC), but those in the micro electrodes preceded only by 13 ms both in distal GCV and LCC. PVC-1 was eliminated by radiofrequency (RF) application, not in distal GCV, but in LCC. PVC-2 showed good pace-mapping in LCC. The local bipolar electrograms in both the conventional electrode and the micro electrodes of ablation catheter preceded the PVC-QRS onset by 32 ms in LCC. PVC-2 was eliminated by RF application in LCC. Comparing the local electrograms of micro electrodes and the conventional electrodes may be important for identifying depth of the origin of PVCs.

9.
ACS Appl Mater Interfaces ; 16(23): 29728-29736, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38804619

RESUMO

Methionine-enkephalin (Met-Enk) is an endogenous opioid peptide that is involved in various physiological processes including memory. A technological gap in the understanding of Met-Enk's role in memory is the lack of rapid measurement tools to selectively quantify Met-Enk concentrations in situ. Here, we integrate molecularly imprinted polymers (MIPs) with carbon fiber microelectrodes (CFMs) to selectively detect Met-Enk by using fast-scan cyclic voltammetry (FSCV). We report two MIP conditions that yield 2-fold and 5-fold higher selectivity toward Met-Enk than the tyrosine-containing hexapeptide fragment angiotensin II (3-8). We demonstrate that MIP technology can be combined with FSCV at CFMs to create rapid and selective sensors for Met-Enk. This technology is a promising platform for creating selective sensors for other peptides and biomarkers.


Assuntos
Fibra de Carbono , Técnicas Eletroquímicas , Encefalina Metionina , Microeletrodos , Fibra de Carbono/química , Encefalina Metionina/análise , Encefalina Metionina/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Impressão Molecular , Polímeros Molecularmente Impressos/química , Carbono/química
10.
Sensors (Basel) ; 24(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733043

RESUMO

In this paper, a novel aptamer-modified nitrogen-doped graphene microelectrode (Apt-Au-N-RGOF) was fabricated and used to specifically identify and detect dopamine (DA). During the synthetic process, gold nanoparticles were loaded onto the active sites of nitrogen-doped graphene fibers. Then, aptamers were modified on the microelectrode depending on Au-S bonds to prepare Apt-Au-N-RGOF. The prepared microelectrode can specifically identify DA, avoiding interference with other molecules and improving its selectivity. Compared with the N-RGOF microelectrode, the Apt-Au-N-RGOF microelectrode exhibited higher sensitivity, a lower detection limit (0.5 µM), and a wider linear range (1~100 µM) and could be applied in electrochemical analysis fields.


Assuntos
Aptâmeros de Nucleotídeos , Dopamina , Técnicas Eletroquímicas , Ouro , Grafite , Nanopartículas Metálicas , Microeletrodos , Grafite/química , Dopamina/análise , Dopamina/química , Aptâmeros de Nucleotídeos/química , Ouro/química , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Nitrogênio/química
11.
ACS Biomater Sci Eng ; 10(5): 2762-2783, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38591141

RESUMO

Implantable neural microelectrodes exhibit the great ability to accurately capture the electrophysiological signals from individual neurons with exceptional submillisecond precision, holding tremendous potential for advancing brain science research, as well as offering promising avenues for neurological disease therapy. Although significant advancements have been made in the channel and density of implantable neural microelectrodes, challenges persist in extending the stable recording duration of these microelectrodes. The enduring stability of implanted electrode signals is primarily influenced by the chronic immune response triggered by the slight movement of the electrode within the neural tissue. The intensity of this immune response increases with a higher bending stiffness of the electrode. This Review thoroughly analyzes the sequential reactions evoked by implanted electrodes in the brain and highlights strategies aimed at mitigating chronic immune responses. Minimizing immune response mainly includes designing the microelectrode structure, selecting flexible materials, surface modification, and controlling drug release. The purpose of this paper is to provide valuable references and ideas for reducing the immune response of implantable neural microelectrodes and stimulate their further exploration in the field of brain science.


Assuntos
Eletrodos Implantados , Microeletrodos , Humanos , Animais , Neurônios/imunologia , Neurônios/fisiologia , Encéfalo/imunologia , Encéfalo/fisiologia
12.
Small Methods ; : e2301215, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678536

RESUMO

Tailoring a material's surface with hierarchical structures from the micro- to the nanoscale is key for fabricating highly sensitive detection platforms. To achieve this, the fabrication method should be simple, inexpensive, and yield materials with a high density of surface features. Here, using benchtop fabrication techniques, gold surfaces with hierarchically structured roughness are generated for sensing applications. Hierarchical gold electrodes are prepared on pre-stressed polystyrene substrates via electroless deposition and amperometric pulsing. Electrodes fabricated using 1 mm H[AuCl4] and roughened with 80 pulses revealed the highest electroactive surface area. These electrodes are used for enzyme-free detection of glucose in the presence of bovine serum albumin and achieved a limit of detection of 0.36 mm, below glucose concentrations in human blood. The surfaces nanoroughened with 100 pulses also showed excellent surface-enhanced Raman scattering (SERS) response for the detection of rhodamine 6G, with an enhancement factor of ≈2 × 106 compared to detection in solution, and for the detection of a self-assembled monolayer of thiophenol, with an enhancement factor of ≈30 compared to the response from microstructured gold surfaces. It is envisioned that the simplicity and low fabrication cost of these gold-roughened structures will expedite the development of electrochemical and SERS sensing devices.

13.
Biosens Bioelectron ; 254: 116224, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513539

RESUMO

Extracellular vesicles (EVs) are pivotal in cell-to-cell communication due to the array of cargo contained within these vesicles. EVs are considered important biomarkers for identification of disease, however most measurement approaches have focused on monitoring specific surface macromolecular targets. Our study focuses on exploring the electroactive component present within cargo from EVs obtained from various cancer and non-cancer cell lines using a disk carbon fiber microelectrode. Variations in the presence of oxidizable components were observed when the total cargo from EVs were measured, with the highest current detected in EVs from MCF7 cells. There were differences observed in the types of oxidizable species present within EVs from MCF7 and A549 cells. Single entity measurements showed clear spikes due to the detection of oxidizable cargo within EVs from MCF7 and A549 cells. These studies highlight the promise of monitoring EVs through the presence of varying electroactive components within the cargo and can drive a wave of new strategies towards specific detection of EVs for diagnosis and prognosis of various diseases.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Neoplasias , Humanos , Linhagem Celular Tumoral , Células MCF-7 , Comunicação Celular , Neoplasias/diagnóstico , Neoplasias/metabolismo
15.
Micromachines (Basel) ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542541

RESUMO

Neurotoxic heavy metals, such as Cd2+, pose a significant global health concern due to their increased environmental contamination and subsequent detrimental health hazards they pose to human beings. These metal ions can breach the blood-brain barrierblood-brain barrier, leading to severe and often irreversible damage to the central nervous system and other vital organs. Therefore, developing a highly sensitive, robust, and rapid in vivo detection method for these hazardous heavy metal ions is of the utmost importance for early detection, thus initiating timely therapeutics. Detecting ultra-low levels of toxic metal ions in vivo and obtaining accurate speciation information remains a challenge with conventional analytical techniques. In this study, we fabricated a novel carbon carbon-fiber microelectrode (CFM)-based sensor that can detect Cd2+ ions using fast-scan cyclic voltammetry by electrodepositing gold nanoparticles (AuNP). We optimized electrochemical parameters that generate a unique cyclic voltammogram (CV) of Cd2+ at a temporal resolution of 100 ms with our novel sensor. All our experiments were performed in tris buffer that mimics the artificial cerebellum fluid. We established a calibration curve resulting in a limit of detection (LOD) of 0.01 µM with a corresponding sensitivity of 418.02 nA/ µM. The sensor's selectivity was evaluated in the presence of other metal ions, and it was noteworthy to observe that the sensor retained its ability to produce the distinctive Cd2+ CV, even when the concentration of other metal ions was 200 times higher than that of Cd2+. We also found that our sensor could detect free Cd2+ ions in the presence of complexing agents. Furthermore, we analyzed the solution chemistry of each of those Cd2+-ligand solutions using a geochemical model, PHREEQC. The concentrations of free Cd2+ ions determined through our electrochemical data align well with geochemical modeling data, thus validating the response of our novel sensor. Furthermore, we reassessed our sensor's LOD in tris buffer based on the concentration of free Cd2+ ions determined through PHREEQC analysis, revealing an LOD of 0.00132 µM. We also demonstrated the capability of our sensor to detect Cd2+ ions in artificial urine samples, showcasing its potential for application in actual biological samples. To the best of our knowledge, this is the first AuNP-modified, CFM-based Cd2+ sensor capable of detecting ultra-low concentrations of free Cd2+ ions in different complex matrices, including artificial urine at a temporal resolution of 100 ms, making it an excellent analytical tool for future real-time, in vivo detection, particularly in the brain.

16.
Materials (Basel) ; 17(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541506

RESUMO

This paper discusses the electrochemical properties of thin-film, planar, titanium-platinum (Ti-Pt) microelectrodes fabricated using glass or silicon substrates and compares their performance to the classic platinum (Pt) microelectrodes embedded in glass. To analyze the possible differences coming both from the size of the tested electrodes as well as from the substrate, short- and long-term electrochemical tests were performed on selected water electrolytes (KCl, HCl, KOH). To study the electrochemical response of the electrodes, the cyclic voltammetry (CV) measurements were carried out at different scanning rates (from 5 to 200 mV/s). Long-term tests were also conducted, including one thousand cycles with a 100 mV/s scan rate to investigate the stability of the tested electrodes. Before and after electrochemical measurements, the film morphology was analyzed using a scanning electron microscope (SEM). The good quality of the thin-film Pt electrodes and the high repeatability in electrochemical response have been shown. There are minor differences in standard deviation values taken from electrochemical measurements, comparing thin-film and wire-based electrodes. Damages or any changes on the electrodes' surfaces were revealed by SEM observations after long-term electrochemical tests.

17.
Adv Healthc Mater ; 13(15): e2304169, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38324245

RESUMO

Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro. When the devices are implanted in the primary visual cortex (area V1) of mice and the animals are trained to detect electrical microstimulation, it is found that the perceptual thresholds are 2-20 microamperes (µA), which is far below the maximal currents that the electrodes can withstand. The long-term functionality of the devices in vivo is excellent, with stable performance for up to more than a year and little damage to the brain tissue. These results demonstrate the potential of thin floating electrodes for the long-term restoration of lost sensory functions.


Assuntos
Eletrodos Implantados , Polímeros , Percepção Visual , Animais , Camundongos , Percepção Visual/fisiologia , Polímeros/química , Camundongos Endogâmicos C57BL , Próteses Visuais/química , Estimulação Elétrica , Córtex Visual/fisiologia
18.
Adv Healthc Mater ; : e2303401, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354063

RESUMO

Extracellular recordings with planar microelectrodes are the gold standard technique for recording the fast action potentials of neurons in the intact brain. The introduction of microfabrication techniques has revolutionized the in vivo recording of neuronal activity and introduced high-density, multi-electrode arrays that increase the spatial resolution of recordings and the number of neurons that can be simultaneously recorded. Despite these innovations, there is still debate about the ideal electrical transfer characteristics of extracellular electrodes. This uncertainty is partly due to the lack of systematic studies comparing electrodes with different characteristics, particularly for chronically implanted arrays over extended time periods. Here a high-density, flexible, and thin-film array is fabricated and tested, containing four distinct electrode types differing in surface material and surface topology and, thus, impedance. It is found that recording quality is strongly related to electrode impedance with signal amplitude and unit yield negatively correlated to impedance. Electrode impedances are stable for the duration of the experiment (up to 12 weeks) and recording quality does not deteriorate. The findings support the expectation from the theory that recording quality will increase as impedance decreases.

19.
Sensors (Basel) ; 24(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38400364

RESUMO

This article presents a new working electrode based on a bismuth-plated, gold-based microelectrode array, which is suitable for determining thallium(I) species using anodic stripping voltammetry (ASV). It allowed a significant increase in the sensitivity as compared to other voltammetric sensors. The main experimental conditions and the instrumental parameters were optimized. A very good proportionality between the Tl(I) peak current and its concentration was evidenced in the range from 5 × 10-10 up to 5 × 10-7 mol L-1 (R = 0.9989) for 120 s of deposition and from 2 × 10-10 up to 2 × 10-7 mol L-1 (R = 0.9988) for 180 s. A limit of detection (LOD) of 8 × 10-11 mol L-1 for a deposition time of 180 s was calculated. The effects of interfering ions on the Tl(I) analytical signal were studied. The proposed method was applied for quantitative Tl(I) detection in water certified reference material TM 25.5 as well as in spiked real water samples, for which satisfactory recovery values between 98.7 and 101.8% were determined.

20.
Bioengineering (Basel) ; 11(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275582

RESUMO

Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from abnormal neuronal hyperexcitability. In the case of pharmacoresistant epilepsy requiring resection surgery, the identification of the Epileptogenic Zone (EZ) is critical. Fast Ripples (FRs; 200-600 Hz) are one of the promising biomarkers that can aid in EZ delineation. However, recording FRs requires physically small electrodes. These microelectrodes suffer from high impedance, which significantly impacts FRs' observability and detection. In this study, we investigated the potential of a conductive polymer coating to enhance FR observability. We employed biophysical modeling to compare two types of microelectrodes: Gold (Au) and Au coated with the conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (Au/PEDOT:PSS). These electrodes were then implanted into the CA1 hippocampal neural network of epileptic mice to record FRs during epileptogenesis. The results showed that the polymer-coated electrodes had a two-order lower impedance as well as a higher transfer function amplitude and cut-off frequency. Consequently, FRs recorded with the PEDOT:PSS-coated microelectrode yielded significantly higher signal energy compared to the uncoated one. The PEDOT:PSS coating improved the observability of the recorded FRs and thus their detection. This work paves the way for the development of signal-specific microelectrode designs that allow for better targeting of pathological biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA