Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
1.
Methods Mol Biol ; 2796: 119-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38856899

RESUMO

Ion channels comprise one of the largest targets for drug development and treatment and have been a subject of enduring fascination since first discovered in the 1950s. Over the past decades, thousands of publications have explored the cellular biology and molecular physiology of these proteins, and many channel structures have been determined since the late 1990s. Trying to connect the dots between ion channel function and structure, voltage clamp fluorometry (VCF) emerges as a powerful tool because it allows monitoring of the conformational rearrangements underlying the different functional states of the channel. This technique represents an elegant harmonization of molecular biology, electrophysiology, and fluorescence. In the following chapter, we will provide a concise guide to performing VCF on Xenopus laevis oocytes using the two-electrode voltage clamp (TEVC) modality. This is the most widely used configuration on Xenopus oocytes for its relative simplicity and demonstrated success in a number of different ion channels utilizing a variety of attached labels.


Assuntos
Fluorometria , Canais Iônicos , Oócitos , Técnicas de Patch-Clamp , Xenopus laevis , Animais , Técnicas de Patch-Clamp/métodos , Fluorometria/métodos , Oócitos/metabolismo , Canais Iônicos/metabolismo , Ativação do Canal Iônico
2.
Mol Biol Rep ; 51(1): 706, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824203

RESUMO

BACKGROUND: Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells. This study aimed to gain insight into the genetic micromanipulation of wheat microspores using microinjection procedures combined with the CRISPR/Cas9 editing system targeting the Ms2 gene. METHODS AND RESULTS: Microspores were first reprogrammed by starvation and heat shock treatment to make them structurally suitable for microinjection. The large central vacuole was fragmented and the nucleus with cytoplasm was positioned in the center of the cell. This step and an additional maltose gradient provided an adequate source of intact single cells in the three wheat genotypes. The microcapillary was inserted into the cell through the germ pore to deliver a working solution with a fluorescent marker. This procedure was much more efficient and less harmful to the microspore than inserting the microcapillary through the cell wall. The CRISPR/Cas9 binary vectors injected into reprogrammed microspores induced mutations in the target Ms2 gene with deletions ranging from 1 to 16 bp. CONCLUSIONS: This is the first report of successful genome editing in an intact microspore/wheat cell using the microinjection technique and the CRISPR/Cas9 editing system. The study presented offers a range of molecular and cellular biology tools that can aid in genetic micromanipulation and single-cell analysis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Microinjeções , Mutação , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Microinjeções/métodos , Mutação/genética , Pólen/genética
3.
Life Sci ; 351: 122822, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866221

RESUMO

Malaria is a major public health concern. The development of parasite-based vaccine RTS/AS01 has some therapeutic value but its lower efficacy is one of the major limitations. Mosquito-based transmission-blocking vaccines could have a higher potential for parasite inhibition within the mosquitoes. Several genes of mosquito midgut, salivary gland, hemolymph, etc. get activate in response to the Plasmodium-infected blood and helps in parasite invasion directly or indirectly inside the mosquito. The studies of such genes provided a new insight into developing the more efficient vaccines. In the field of malaria genetics research, RNAi has become an innovative strategy used to identify mosquito candidate genes for transmission-blocking vaccines. This review targeted the gene studies that have been conducted in the period 2000-2023 in different malaria vectors against different malarial parasites using the RNAi approach to reveal mosquito novel gene candidates for vaccine development.


Assuntos
Anopheles , Vacinas Antimaláricas , Malária , Mosquitos Vetores , Interferência de RNA , Animais , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/genética , Anopheles/parasitologia , Anopheles/genética , Malária/prevenção & controle , Malária/transmissão , Humanos , Mosquitos Vetores/parasitologia , Mosquitos Vetores/genética
4.
Clin Cosmet Investig Dermatol ; 17: 1405-1412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895607

RESUMO

Rosacea is a chronic inflammatory skin disease that affects a patient's appearance and quality of life. It mainly affects the midface region and presents as erythema, flushing, telangiectasia, papules, pustules, and rhinophyma. Despite its prevalence, the precise pathophysiology of rosacea remains unknown, and novel pharmacological therapies are currently under investigation. Tranexamic acid (TA) is a synthetic, lysine-like compound that competitively inhibits fibrinogen production by synthesizing fibrinolytic enzymes. In addition to its popular application in hemorrhage treatment, TA has been used to manage a number of skin conditions, including melasma, chronic urticaria, and angioedema. TA is a better option for melasma treatment. However, the role of TA in treating rosacea has not yet been systematically elucidated. In this study, we reviewed all available literature on the use of TA for rosacea treatment. The included articles examined the therapeutic effects of TA in patients with rosacea, including traditional methods such as oral and topical administration and more novel approaches such as intradermal injections, microneedling, and laser-assisted delivery. Several recent clinical studies demonstrated that TA alleviates rosacea symptoms by restoring the permeability barrier, ameliorating the immune reaction, and inhibiting angiogenesis. In this review, we summarized the function and potential application of TA in rosacea treatment, aiming to facilitate the implementation of clinical applications.

5.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38734969

RESUMO

While clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology has demonstrated remarkable promise as a gene-editing tool, its application in certain insects, such as the jewel wasp, Nasonia vitripennis, has been hindered by a lack of a tractable method for reagent delivery. Direct Parental (DIPA-) CRISPR recently emerged as a facile way to induce gene lesions because it involves adult injection with commercially available Cas9-sgRNA with no helper reagent. However, DIPA-CRISPR has so far been tested in only a few insects. Here, we have assessed the amenability of DIPA-CRISPR in N. vitripennis by targeting two eye pigmentation genes, cinnabar and vermilion, which function in the ommochrome pathway. Successful generation of lesions in both genes demonstrated the functionality of DIPA-CRISPR in N. vitripennis and its potential application to other genes, thereby expanding the range of insects suitable for this method. We varied two parameters, Cas9-sgRNA concentration and injection volume, to determine optimal injection conditions. We found that the larger injection volume coupled with either higher or lower reagent concentration was needed for consistent mutation production. However, DIPA-CRISPR yields an overall low mutation rate in N. vitripennis when compared to other tested insects, a characteristic that may be attributed to a proportionally low vitellogenic import efficiency in the jewel wasp. We discuss different factors that may be considered in determining when DIPA-CRISPR may be preferable over other reagent delivery methods.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Vespas , Animais , Vespas/genética , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas
6.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38610350

RESUMO

Microinjection is usually applied to the treatment of some retinal disorders, such as retinal vein cannulation and displaced submacular hemorrhage. Currently, the microinjection procedure is usually performed by using the viscous fluid control of a standard vitrectomy system, which applies a fixed air pressure through foot pedal activation. The injection process with the fixed pressure is uncontrollable and lacks feedback, the high flow rate of the injected drug may cause damage to the fundus tissue. In this paper, a liquid-driven microinjection system with a flow sensor is designed and developed specifically for fundus injection. In addition, a PID sliding mode control (SMC) method is proposed to achieve precise injection in the injection system. The experimental results of fundus simulation injection demonstrate that the microinjection system meets the requirements of fundus injection and reduces the impact of the injection process on the fundus tissue.


Assuntos
Abomaso , Veia Retiniana , Animais , Microinjeções , Simulação por Computador , Fundo de Olho
7.
Mol Ther Methods Clin Dev ; 32(2): 101229, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38533521

RESUMO

Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.

8.
Microorganisms ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543639

RESUMO

The process of sexual reproduction in eukaryotes starts when gametes from two different sexes encounter each other. Paramecium, a unicellular eukaryote, undergoes conjugation and uses a gametic nucleus to enter the sexual reproductive process. The molecules responsible for recognizing mating partners, hypothetically called mating-type substances, are still unclear. We have identified an O3-type mating substance polypeptide and its gene sequence using protein chemistry, molecular genetics, immunofluorescence, RNA interference, and microinjection. The O3-type substance is a polypeptide found in the ciliary membranes, located from the head to the ventral side of cells. The O3-type substance has a kinase-like domain in its N-terminal part located outside the cell and four EF-hand motifs that bind calcium ions in its C-terminal part located inside the cell. RNA interference and immunofluorescence revealed that this polypeptide positively correlated with the expression of mating reactivity. Microinjection of an expression vector incorporating the O3Pc-MSP gene (Oms3) induced additional O3 mating type in the recipient clones of different mating types or syngen. Phylogenetic analysis indicates that this gene is widely present in eukaryotes and exhibits high homology among closely related species. The O3Pc-MSP (Oms3) gene had nine silent mutations compared to the complementary mating type of the E3 homologue gene.

9.
Open Vet J ; 14(2): 707-715, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549579

RESUMO

Background: Epididymal sperm preservation is a simple conservation approach that can help prevent the loss of high genetic quality of farm animals. The chance of loss increases, especially during disease outbreaks or other interruptions to normal reproduction function. Aim: This study looked into the ability of preserved ram epididymal sperm to fertilize oocytes. Due to motility becoming an issue following sperm storage for fertilization, the sperm microinjection known as intracytoplasmic sperm injection approach was employed. Methods: The study was divided into two parts. First, involved the preservation of epididymal sperm at 5°C for 12 days. During preservation, sperm quality parameters namely motility, viability, intact membrane, acrosome, and Deoxyribonucleic acid (DNA) are evaluated every three days. For the fertility test in the second experiment, matured oocytes were injected with immotile sperm discovered in the last days of preservation. The presence of pronucleus development following in vitro culture is used as an indicator of sperm's ability to activate and fertilize oocytes. Results: All sperm quality parameters significantly (p < 0.05) declined during preservation time. On day 12, motility was discovered to be 0%, but viable sperm, sperm with intact membrane, acrosome, and DNA remained at 41.86% ± 9.30%, 31.18% ± 5.15%, 21.88% ± 1.93%, and 33.35% ± 8.74%, respectively. On the fertility test, we inject immotile sperm from day 12 of preservation, which has the lowest motility found, into matured oocytes. Those sperms are able to activate (52.05% ± 7.15%) and fertilize (31.37% ± 1.75%) the injected oocytes, but their fertilizing ability is significantly lower (p < 0.05) when compared to the sperm derived from the ejaculate. Conclusion: In this study, simple preservation of epididymal sperm reduces all sperm quality criteria, particularly motility. Using the microinjection approach preserved sperm which had no motility, still demonstrated its ability to activate and fertilize the oocytes. According to that, this study provides potential approaches and tools for using genetically superior animals that have lost their ability to execute regular fertilization, and also prolong reproduction function.


Assuntos
Sêmen , Espermatozoides , Masculino , Ovinos , Animais , Microinjeções/veterinária , Espermatozoides/fisiologia , Fertilidade , DNA
10.
Theriogenology ; 220: 43-55, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471390

RESUMO

Genome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and ß4GalNT2. Additionally, we attempted to KO the growth hormone receptor (GHR) gene with the aim of limiting the growth of porcine organs to a size that is physiologically suitable for human transplantation. Embryo development, pregnancy, and gene editing rates were evaluated. We found an efficient mutation of the GGTA1 gene following ICSI-MGE, comparable to the results obtained through the microinjection of oocytes followed by IVF. ICSI-MGE also showed higher rates of biallelic mutations compared to the other techniques. Five healthy piglets were born from in vivo-derived embryos, all of them exhibiting biallelic mutations in the GGTA1 gene, with three displaying mutations in the GHR gene. No mutations were observed in the CMAH and ß4GalNT2 genes. In conclusion, in vitro methodologies showed high rates of gene-edited embryos. Specifically, ICSI-MGE proved to be an efficient technique for obtaining homozygous biallelic mutated embryos. Lastly, only live births were obtained from in vivo-derived embryos showing efficient multiple gene editing for GGTA1 and GHR.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Suínos/genética , Humanos , Masculino , Animais Geneticamente Modificados , Edição de Genes/veterinária , Transplante Heterólogo/veterinária , Injeções de Esperma Intracitoplásmicas/veterinária , Sêmen , Fertilização in vitro/veterinária
11.
Biomolecules ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397438

RESUMO

Recently, we described the alteration of six miRNAs in the serum of autistic children, their fathers, mothers, siblings, and in the sperm of autistic mouse models. Studies in model organisms suggest that noncoding RNAs participate in transcriptional modulation pathways. Using mice, approaches to alter the amount of RNA in fertilized eggs enable in vivo intervention at an early stage of development. Noncoding RNAs are very numerous in spermatozoa. Our study addresses a fundamental question: can the transfer of RNA content from sperm to eggs result in changes in phenotypic traits, such as autism? To explore this, we used sperm RNA from a normal father but with autistic children to create mouse models for autism. Here, we induced, in a single step by microinjecting sperm RNA into fertilized mouse eggs, a transcriptional alteration with the transformation in adults of glial cells into cells affected by astrogliosis and microgliosis developing deficiency disorders of the 'autism-like' type in mice born following these manipulations. Human sperm RNA alters gene expression in mice, and validates the possibility of non-Mendelian inheritance in autism.


Assuntos
Transtorno Autístico , MicroRNAs , Criança , Adulto , Humanos , Masculino , Animais , Camundongos , Transtorno Autístico/genética , Sêmen/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatozoides/metabolismo , RNA não Traduzido/metabolismo , Neuroglia/metabolismo
12.
Mol Genet Genomics ; 299(1): 5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315256

RESUMO

The CRISPR/Cas9 system is the most straightforward genome-editing technology to date, enabling genetic engineering in many insects, including the black soldier fly, Hermetia illucens. The white gene plays a significant role in the multifarious life activities of insects, especially the pigmentation of the eyes. In this study, the white gene of H. illucens (Hiwhite) was cloned, identified, and bioinformatically analysed for the first time. Using quantitative real-time polymerase chain reaction (qPCR), we found that the white gene was expressed in the whole body of the adult flies, particularly in Malpighian tubules and compound eyes. Furthermore, we utilised CRISPR/Cas9-mediated genome-editing technology to successfully generate heritable Hiwhite mutants using two single guide RNAs. During Hiwhite genome editing, we determined the timing, method, and needle-pulling parameters for embryo microinjection by observing early embryonic developmental features. We used the CasOT program to obtain highly specific guide RNAs (gRNAs) at the genome-wide level. According to the phenotypes of Hiwhite knockout strains, the pigmentation of larval stemmata, imaginal compound eyes, and ocelli differed from those of the wild type. These phenotypes were similar to those observed in other insects harbouring white gene mutations. In conclusion, our results described a detailed white genome editing process in black soldier flies, which lays a solid foundation for intensive research on the pigmentation pathway of the eyes and provides a methodological basis for further genome engineering applications in black soldier flies.


Assuntos
Dípteros , Edição de Genes , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Dípteros/genética , RNA Guia de Sistemas CRISPR-Cas , Mutação
13.
Methods Cell Biol ; 181: 17-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302238

RESUMO

Dopaminergic neurons in the brain are an important source of dopamine, which is a crucial neurotransmitter for wellbeing, memory, reward, and motor control. Deficiency of dopamine due to advanced age and accumulative dopaminergic neuron defects can lead to movement disorders such as Parkinson's disease. Glial cell-derived neurotrophic factor (GDNF) is one of many factors involved in dopaminergic neuron development and/or survival. However, other endogenous GDNF functions in the brain await further investigation. Zebrafish is a well-established genetic model for neurodevelopment and neurodegeneration studies. Importantly, zebrafish shares approximately 70% functional orthologs with human genes including GDNF. To gain a better understanding on the precise functional role of gdnf in dopaminergic neurons, our laboratory devised a targeted knockdown of gdnf in the zebrafish larval brain using vivo morpholino. Here, detailed protocols on the generation of gdnf morphants using vivo morpholino are outlined. This method can be applied for targeting of genes in the brain to determine specific spatiotemporal gene function in situ.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Morfolinos/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Dopamina , Microinjeções
14.
Methods Mol Biol ; 2742: 131-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165621

RESUMO

Borrelia burgdorferi is the spirochetal bacterium that causes Lyme disease. Even though antimicrobial sensitivity of B. burgdorferi has been widely studied, there is still a need to develop an affordable, practical, high-throughput in vivo model which can be used to find effective antibiotic therapies, especially for the recently discovered persister and biofilm forms. Here, we describe the immersion and microinjection methods to introduce B. burgdorferi spirochetes into zebrafish larvae. The B. burgdorferi-zebrafish model can be produced by immersing 5-day post-fertilization (dpf) zebrafish in a B. burgdorferi culture, or by injecting B. burgdorferi into the hindbrain of zebrafish at 28 h post-fertilization (hpf). To demonstrate that B. burgdorferi indeed infect the fish, nested polymerase chain reaction (PCR), reverse transcription PCR (RT-PCR), live fluorescence imaging, histological staining, and wholemount immunohistochemical (IHC) methods can be used on B. burgdorferi-infected zebrafish.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Animais , Peixe-Zebra , Microinjeções , Imersão , Doença de Lyme/microbiologia , Borrelia burgdorferi/genética
15.
J Mech Behav Biomed Mater ; 150: 106362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169208

RESUMO

Micro-injection molding (MiM) is a promising technique for manufacturing biodegradable polymeric vascular stents (BPVSs) at scale, in which a trapezoidal strut cross section is needed to ensure high-quality de-molding. However, there is a lack of research on the influence of the strut cross-sectional shape on its mechanical properties, posing a challenge in determining the key geometries of the strut when using MiM to produce BPVSs. Hence, this work has investigated the relationships between the geometry parameters, including the de-molding angle, and the radial support property of BPVSs using the finite element method. The results reveal that the radial stiffness of BPVSs is significantly affected by the de-molding angle, which can be counteracted by adjusting strut height, bending radius, and strut thickness. Stress distribution analysis underscores the crucial role of the curved portion of the support ring during compression, with the inner side of the curved region experiencing stress concentration. A mathematical model has been established to describe the relationships between the geometry parameters and the radial support property of the BPVSs. Notably, the radius of the neutral layer emerges as a key determinant of radial stiffness. This study is expected to serve as a guideline for the development of BPVSs that can be manufactured using MiM.


Assuntos
Rádio (Anatomia) , Stents , Desenho de Prótese , Polímeros , Modelos Teóricos
16.
Environ Toxicol Chem ; 43(4): 762-771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38088253

RESUMO

Benzotriazole ultraviolet (UV) stabilizers (BUVSs) are used in great quantities during industrial production of a variety of consumer and industrial goods. As a result of leaching and spill, BUVSs are detectable ubiquitously in the environment. As of May 2023, citing concerns related to bioaccumulation, biomagnification, and environmental persistence, (B)UV(S)-328 was recommended to be listed under Annex A of the Stockholm Convention on Persistent Organic Pollutants. However, a phaseout of UV-328 could result in a regrettable substitution because the replacement chemical(s) could cause similar or unpredicted toxicity in vivo, relative to UV-328. Therefore, the influence of UV-327, a potential replacement of UV-328, was investigated with respect to early life development of newly fertilized rainbow trout embryos (Oncorhynchus mykiss), microinjected with environmentally relevant concentrations of UV-327. Developmental parameters (standard length), energy consumption (yolk area), heart function, blue sac disease, mortality, and behavior were investigated. Alevins at 14 days posthatching, exposed to 107 ng UV-327 g-1 egg, presented significant signs of hyperactivity; they moved on average 1.8-fold the distance and at 1.5-fold the velocity of controls. Although a substantial reduction in body burden of UV-327 was observed at hatching, it is postulated that UV-327, due to its lipophilic properties, interfered with neurological development and signaling from the onset of neurogenesis. If these results hold true across multiple taxa and species, a potential contributor to neurodevelopmental disorders might have been identified. These findings suggest that UV-327 poses an unknown hazard to rainbow trout embryos and alevins, rendering UV-327 a potential regrettable substitution to UV-328. However, a qualified statement on a regrettable substitution requires a comparative investigation on the teratogenic effects between the two BUVSs. Environ Toxicol Chem 2024;43:762-771. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Oncorhynchus mykiss , Animais , Triazóis/toxicidade
17.
Environ Sci Technol ; 58(1): 110-120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112502

RESUMO

Benzotriazole ultraviolet stabilizers (BUVSs) are chemicals used to mitigate UV-induced damage to manufactured goods. Their presence in aquatic environments and biota raises concerns, as certain BUVSs activate the aryl hydrocarbon receptor (AhR), which is linked to adverse effects in fish. However, potencies of BUVSs as AhR agonists and species sensitivities to AhR activation are poorly understood. This study evaluated the toxicity of three BUVSs using embryotoxicity assays. Zebrafish (Danio rerio) embryos exposed to BUVSs by microinjection suffered dose-dependent increases in mortality, with LD50 values of 4772, 11 608, and 56 292 ng/g-egg for UV-P, UV-9, and UV-090, respectively. The potencies and species sensitivities to AhR2 activation by BUVSs were assessed using a luciferase reporter gene assay with COS-7 cells transfected with the AhR2 of zebrafish and eight other fishes. The rank order of potency for activation of the AhR2 from all nine species was UV-P > UV-9 > UV-090. However, AhR2s among species differed in sensitivities to activation by up to 100-fold. An approximate reversed rank order of species sensitivity was observed compared to the rank order of sensitivity to 2,3,7,8-tetrachlorodibenzo[p]dioxin, the prototypical AhR agonist. Despite this, a pre-existing quantitative adverse outcome pathway linking AhR activation to embryo lethality could predict embryotoxicities of BUVSs in zebrafish.


Assuntos
Dibenzodioxinas Policloradas , Peixe-Zebra , Animais , Receptores de Hidrocarboneto Arílico/genética , Triazóis/toxicidade , Triazóis/metabolismo , Dibenzodioxinas Policloradas/toxicidade
18.
Bio Protoc ; 13(23): e4888, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38094252

RESUMO

The innate immune system can remember previous inflammatory insults, enabling long-term heightened responsiveness to secondary immune challenges in a process termed "trained immunity." Trained innate immune cells undergo metabolic and epigenetic remodelling and, upon a secondary challenge, provide enhanced protection with therapeutic potential. Trained immunity has largely been studied in innate immune cells in vitro or following ex vivo re-stimulation where the primary insult is typically injected into a mouse, adult zebrafish, or human. While highly informative, there is an opportunity to investigate trained immunity entirely in vivo within an unperturbed, intact whole organism. The exclusively innate immune response of larval zebrafish offers an attractive system to model trained immunity. Larval zebrafish have a functional innate immune system by 2 days post fertilisation (dpf) and are amenable to high-resolution, high-throughput analysis. This, combined with their optical transparency, conserved antibacterial responses, and availability of transgenic reporter lines, makes them an attractive alternative model to study trained immunity in vivo. We have devised a protocol where ß-glucan (one of the most widely used experimental triggers of trained immunity) is systemically delivered into larval zebrafish using microinjection to stimulate a trained-like phenotype. Following stimulation, larvae are assessed for changes in gene expression, which indicate the stimulatory effect of ß-glucan. This protocol describes a robust delivery method of one of the gold standard stimulators of trained immunity into a model organism that is highly amenable to several non-invasive downstream analyses. Key features • This protocol outlines the delivery of one of the most common experimental stimulators of trained immunity into larval zebrafish. • The protocol enables the assessment of a trained-like phenotype in vivo. • This protocol can be applied to transgenic or mutant zebrafish lines to investigate cells or genes of interest in response to ß-glucan stimulation.

19.
Antibiotics (Basel) ; 12(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136774

RESUMO

(1) Background: Microinjection of zebrafish (Danio rerio) embryos offers a promising model for studying the virulence and potential environmental risks associated with Pseudomonas aeruginosa. (2) Methods: This work aimed to develop a P. aeruginosa infection model using two parallel exposition pathways on zebrafish larvae with microinjection into the yolk and the perivitelline space to simultaneously detect the invasive and cytotoxic features of the examined strains. The microinjection infection model was validated with 15 environmental and clinical strains of P. aeruginosa of various origins, antibiotic resistance profiles, genotypes and phenotypes: both exposition pathways were optimized with a series of bacterial dilutions, different drop sizes (injection volumes) and incubation periods. Besides mortality, sublethal symptoms of the treated embryos were detected and analyzed. (3) Results: According to the statistical evaluation of our results, the optimal parameters (dilution, drop size and incubation period) were determined. (4) Conclusions: The tested zebrafish embryo microinjection infection model is now ready for use to determine the in vivo virulence and ecological risk of environmental P. aeruginosa.

20.
Pathogens ; 12(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38003772

RESUMO

Chili anthracnose has long been a threat to chili production worldwide. Capsicum baccatum 'PBC80' has been identified as a source of resistance to anthracnose. Recently, a QTL for ripe fruit resistance from 'PBC80'-derived RILs was located on chromosome 4 (123 Mb) and contained over 80 defense-related genes. To identify the genes most related to anthracnose resistance, a fine map of the QTL region was developed using single-marker analysis. Nine genes were selected from the new QTL (1.12 Mb) to study their expression after being challenged with Colletotrichum scovillei 'MJ5' in two different RIL genotypes (Resistance/Resistance or R/R and Susceptible/Susceptible or S/S) at 0, 6 and 12 h. Of the nine genes, LYM2, CQW23_09597, CLF, NFXL1, and PR-14 were significantly up-regulated, compared to the control, in the R/R genotype. ERF was up-regulated in both chili genotypes. However, the expression was relatively and constantly low in the S/S genotype. Most up-regulated genes reached the highest peak (2.3-4.5 fold) at 6 h, except for ERF, which had the highest peak at 12 h (6.4 fold). The earliest and highest expressed gene was a pathogen receptor, LYM2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA