Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.536
Filtrar
1.
J Biomed Opt ; 29(Suppl 2): S22702, 2025 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38434231

RESUMO

Significance: Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim: This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach: Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion: Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.


Assuntos
Técnicas Histológicas , Microscopia , Animais , Citometria de Fluxo , Processamento de Imagem Assistida por Computador
2.
Artigo em Inglês | MEDLINE | ID: mdl-38951226

RESUMO

PURPOSE: To evaluate and compare endothelial features by in-vivo confocal microscopy (IVCM) in Chinese eyes with chronic or recurrent anterior uveitis (AU) with and without cytomegalovirus (CMV). METHODS: A double-masked, cross-sectional case-control study at a tertiary eye clinic. RESULTS: Thirty eyes of 30 subjects were analyzed. Fifteen eyes (50%) were CMV positive, while fifteen eyes were negative for herpes simplex virus, varicella zoster virus and CMV. Absence of pseudoguttata was the strongest, independent risk factor for CMV (OR 34.53, 95% CI: 1.84-648.02, p = 0.018), followed by severe iris depigmentation (OR 31.45, 1.02-965.81, p = 0.048) and low corneal endothelial cell density (ECD) (OR 14.79, 1.14-191.30, p = 0.039) on univariable regression. All three remained statistically significant after adjustment. The combination of absence of pseudoguttata and low ECD on IVCM achieved a similar predictive value as iris depigmentation examination. CONCLUSION: Absence of pseudoguttata on IVCM was an independent predictor of positive CMV detection after adjusting for iris depigmentation and corneal endothelial cell density. The addition of this feature to severe iris depigmentation and low corneal ECD can increase the positive predictive value of detecting CMV. IVCM was a useful non-invasive tool to predict CMV in patients with chronic or recurrent AU.

3.
BMC Cancer ; 24(1): 785, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951767

RESUMO

BACKGROUND: Merkel cell carcinoma (MCC) is a rare, aggressive, cutaneous tumour with high mortality and frequently delayed diagnosis. Clinically, it often manifests as a rapidly growing erythematous to purple nodule usually located on the lower extremities or face and scalp of elderly patients. There is limited available data on the dermoscopic findings of MCC, and there are no specific features that can be used to definitively diagnose MCC. AIM OF THE STUDY: Here, we aimed to summarize existing published literature on dermatoscopic and reflectance confocal microscopy (RCM) features of MCC. MATERIALS AND METHODS: To find relevant studies, we searched the PubMed and Scopus databases from inception to April 12, 2023. Our goal was to identify all pertinent research that had been written in English. The following search strategy was employed: (" dermoscopy" OR " dermatoscopy" OR " videodermoscopy" OR " videodermatoscopy" OR " reflectance confocal microscopy") AND " Merkel cell carcinoma". Two dermatologists, DK and GE, evaluated the titles and abstracts separately for eligibility. For inclusion, only works written in English were taken into account. RESULTS: In total 16 articles were retrieved (68 cases). The main dermoscopic findings of MCC are a polymorphous vascular pattern including linear irregular, arborizing, glomerular, and dotted vessels on a milky red background, with shiny or non-shiny white areas. Pigmentation was lacking in all cases. The RCM images showed a thin and disarranged epidermis, and small hypo-reflective cells that resembled lymphocytes arranged in solid aggregates outlined by fibrous tissue in the dermis. Additionally, there were larger polymorphic hyper-reflective cells that likely represented highly proliferative cells. CONCLUSION: Dermoscopic findings of MCC may play a valuable role in evaluating MCC, aiding in the early detection and differentiation from other skin lesions. Further prospective case-control studies are needed to validate these results.


Assuntos
Carcinoma de Célula de Merkel , Dermoscopia , Microscopia Confocal , Neoplasias Cutâneas , Carcinoma de Célula de Merkel/diagnóstico por imagem , Carcinoma de Célula de Merkel/patologia , Humanos , Dermoscopia/métodos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Microscopia Confocal/métodos
4.
ACS Nano ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952163

RESUMO

Ferroelectric materials display exotic polarization textures at the nanoscale that could be used to improve the energetic efficiency of electronic components. The vast majority of studies were conducted in two dimensions on thin films that can be further nanostructured, but very few studies address the situation of individual isolated nanocrystals (NCs) synthesized in solution, while such structures could have other fields of applications. In this work, we experimentally and theoretically studied the polarization texture of ferroelectric barium titanate (BaTiO3, BTO) NCs attached to a conductive substrate and surrounded by air. We synthesized NCs of well-defined quasicubic shape and 160 nm average size that conserve the tetragonal structure of BTO at room temperature. We then investigated the inverse piezoelectric properties of such pristine individual NCs by vector piezoresponse force microscopy (PFM), taking particular care to suppress electrostatic artifacts. In all of the NCs studied, we could not detect any vertical PFM signal, and the maps of the lateral response all displayed larger displacement amplitude on the edges with deformations converging toward the center. Using field phase simulations dedicated to ferroelectric nanostructures, we were able to predict the equilibrium polarization texture. These simulations revealed that the NC core is composed of 180° up and down domains defining the polar axis that rotate by 90° in the two facets orthogonal to this axis, eventually lying within these planes forming a layer of about 10 nm thickness mainly composed of 180° domains along an edge. From this polarization distribution, we predicted the lateral PFM response, which was revealed to be in very good qualitative agreement with the experimental observations. This work positions PFM as a relevant tool to evaluate the potential of complex ferroelectric nanostructures to be used as sensors.

5.
Beilstein J Nanotechnol ; 15: 733-742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952415

RESUMO

The evolution of a multilayer sample surface during focused ion beam processing was simulated using the level set method and experimentally studied by milling a silicon dioxide layer covering a crystalline silicon substrate. The simulation took into account the redeposition of atoms simultaneously sputtered from both layers of the sample as well as the influence of backscattered ions on the milling process. Monte Carlo simulations were applied to produce tabulated data on the angular distributions of sputtered atoms and backscattered ions. Two sets of test structures including narrow trenches and rectangular boxes with different aspect ratios were experimentally prepared, and their cross sections were visualized in scanning transmission electron microscopy images. The superimposition of the calculated structure profiles onto the images showed a satisfactory agreement between simulation and experimental results. In the case of boxes that were prepared with an asymmetric cross section, the simulation can accurately predict the depth and shape of the structures, but there is some inaccuracy in reproducing the form of the left sidewall of the structure with a large amount of the redeposited material. To further validate the developed simulation approach and gain a better understanding of the sputtering process, the distribution of oxygen atoms in the redeposited layer derived from the numerical data was compared with the corresponding elemental map acquired by energy-dispersive X-ray microanalysis.

6.
J Biomed Opt ; 29(Suppl 2): S22711, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38952688

RESUMO

Significance: Biomanufacturing utilizes modified microbial systems to sustainably produce commercially important biomolecules for use in agricultural, energy, food, material, and pharmaceutical industries. However, technological challenges related to non-destructive and high-throughput metabolite screening need to be addressed to fully unlock the potential of synthetic biology and sustainable biomanufacturing. Aim: This perspective outlines current analytical screening tools used in industrial cell strain development programs and introduces label-free vibrational spectro-microscopy as an alternative contrast mechanism. Approach: We provide an overview of the analytical instrumentation currently used in the "test" portion of the design, build, test, and learn cycle of synthetic biology. We then highlight recent progress in Raman scattering and infrared absorption imaging techniques, which have enabled improved molecular specificity and sensitivity. Results: Recent developments in high-resolution chemical imaging methods allow for greater throughput without compromising the image contrast. We provide a roadmap of future work needed to support integration with microfluidics for rapid screening at the single-cell level. Conclusions: Quantifying the net expression of metabolites allows for the identification of cells with metabolic pathways that result in increased biomolecule production, which is essential for improving the yield and reducing the cost of industrial biomanufacturing. Technological advancements in vibrational microscopy instrumentation will greatly benefit biofoundries as a complementary approach for non-destructive cell screening.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Vibração , Bactérias/metabolismo , Bactérias/química
7.
Glia ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946065

RESUMO

Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.

8.
ACS Nano ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946088

RESUMO

The honeycomb lattice is a fundamental two-dimensional (2D) network that gives rise to surprisingly rich electronic properties. While its expansion to 2D supramolecular assembly is conceptually appealing, its realization is not straightforward because of weak intermolecular coupling and the strong influence of a supporting substrate. Here, we show that the application of a triptycene derivative with phenazine moieties, Trip-Phz, solves this problem due to its strong intermolecular π-π pancake bonding and nonplanar geometry. Our scanning tunneling microscopy (STM) measurements demonstrate that Trip-Phz molecules self-assemble on a Ag(111) surface to form chiral and commensurate honeycomb lattices. Electronically, the network can be viewed as a hybrid of honeycomb and kagome lattices. The Dirac and flat bands predicted by a simple tight-binding model are reproduced by total density functional theory (DFT) calculations, highlighting the protection of the molecular bands from the Ag(111) substrate. The present work offers a rational route for creating chiral 2D supramolecules that can simultaneously accommodate pristine Dirac and flat bands.

9.
Indian J Med Microbiol ; : 100661, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950657

RESUMO

Rhino-orbital-cerebral mucormycosis (ROCM) is linked to uncontrolled diabetes, diabetic ketoacidosis, iron overload, corticosteroid therapy, and neutropenia. This study evaluated a commercial real-time PCR system's effectiveness in detecting Mucorales from nasal swabs in 50 high-risk patients. Nasal swab PCR showed 30% positivity, compared to 8% with KOH microscopy. Despite its improved sensitivity, nasal swab PCR has limitations, highlighting the importance of established sampling methods in mucormycosis diagnosis. Participants were predominantly male (64%), with diabetes (78%) and amphotericin B use (96%). Prior COVID-19 was 42%, with 30% positive for Mucorales by PCR, compared to 8% with KOH microscopy.

10.
J Neurochem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946488

RESUMO

A growth cone is a highly motile tip of an extending axon that is crucial for neural network formation. Three-dimensional-structured illumination microscopy, a type of super-resolution light microscopy with a resolution that overcomes the optical diffraction limitation (ca. 200 nm) of conventional light microscopy, is well suited for studying the molecular dynamics of intracellular events. Using this technique, we discovered a novel type of filopodia distributed along the z-axis ("z-filopodia") within the growth cone. Z-filopodia were typically oriented in the direction of axon growth, not attached to the substratum, protruded spontaneously without microtubule invasion, and had a lifetime that was considerably shorter than that of conventional filopodia. Z-filopodia formation and dynamics were regulated by actin-regulatory proteins, such as vasodilator-stimulated phosphoprotein, fascin, and cofilin. Chromophore-assisted laser inactivation of cofilin induced the rapid turnover of z-filopodia. An axon guidance receptor, neuropilin-1, was concentrated in z-filopodia and was transported together with them, whereas its ligand, semaphorin-3A, was selectively bound to them. Membrane domains associated with z-filopodia were also specialized and resembled those of lipid rafts, and their behaviors were closely related to those of neuropilin-1. The results suggest that z-filopodia have unique turnover properties, and unlike xy-filopodia, do not function as force-generating structures for axon extension.

11.
Infect Drug Resist ; 17: 2659-2671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947374

RESUMO

Contact lenses (CL) have become an immensely popular means of vision correction, offering comfort to millions worldwide. However, the persistent issue of biofilm formation on lenses raises significant problems, leading to various ocular complications and discomfort. The aim of this review is to develop safer and more effective strategies for preventing and managing microbial biofilms on CL, improving the eye health and comfort of wearers. Taking these into consideration, the present study investigates the intricate mechanisms of biofilm formation, by exploring the interplay between microbial adhesion, the production of extracellular polymeric substances, and the properties of the lens material itself. Moreover, it emphasizes the diverse range of microorganisms involved, encompassing bacteria, fungi, and other opportunistic pathogens, elucidating their implications within lenses and other medical device-related infections and inflammatory responses. Going beyond the challenges posed by biofilms on CL, this work explores the advancements in biofilm detection techniques and their clinical relevance. It discusses diagnostic tools like confocal microscopy, genetic assays, and emerging technologies, assessing their capacity to identify and quantify biofilm-related infections. Finally, the paper delves into contemporary strategies and innovative approaches for managing and preventing biofilms development on CL. In Conclusion, this review provides insights for eye care practitioners, lens manufacturers, and microbiology researchers. It highlights the intricate interactions between biofilms and CL, serving as a foundation for the development of effective preventive measures and innovative solutions to enhance CL safety, comfort, and overall ocular health. Research into microbial biofilms on CL is continuously evolving, with several future directions being explored to address challenges and improve eye health outcomes as far as CL wearers are concerned.

12.
Front Oncol ; 14: 1394493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947893

RESUMO

Introduction: Although the incidence and mortality rates of colorectal cancer exhibit significant variability, it remains one of the most prevalent cancers worldwide. Endeavors to prevent colorectal cancer development focus on detecting precursor lesions during colonoscopy. The diagnosis of endoscopically resected polyps relies on hematoxylin and eosin staining examination. For challenging cases like adenomatous polyps with epithelial misplacement, additional diagnostic methods could prove beneficial. Methods: This paper aims to underscore stromal changes observed in malignant polyps and polyps with pseudoinvasion, leveraging two-photon excitation microscopy (TPEM), a technique extensively employed in the medical field in recent years. Results and discussions: Both the subjective and quantitative analysis of TPEM images revealed distinct distributions and densities of collagen at the invasion front in malignant polyps compared to areas of pseudoinvasion. TPEM holds potential in discerning true invasion in malignant polyps from pseudoinvasion, offering enhanced visualization of local stromal changes.

13.
mLife ; 3(2): 240-250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948148

RESUMO

Cytidine triphosphate synthase (CTPS) plays a pivotal role in the de novo synthesis of cytidine triphosphate (CTP), a fundamental building block for RNA and DNA that is essential for life. CTPS is capable of directly binding to all four nucleotide triphosphates: adenine triphosphate, uridine triphosphate, CTP, and guanidine triphosphate. Furthermore, CTPS can form cytoophidia in vivo and metabolic filaments in vitro, undergoing regulation at multiple levels. CTPS is considered a potential therapeutic target for combating invasions or infections by viral or prokaryotic pathogens. Utilizing cryo-electron microscopy, we determined the structure of Escherichia coli CTPS (ecCTPS) filament in complex with CTP, nicotinamide adenine dinucleotide (NADH), and the covalent inhibitor 6-diazo-5-oxo- l-norleucine (DON), achieving a resolution of 2.9 Å. We constructed a phylogenetic tree based on differences in filament-forming interfaces and designed a variant to validate our hypothesis, providing an evolutionary perspective on CTPS filament formation. Our computational analysis revealed a solvent-accessible ammonia tunnel upon DON binding. Through comparative structural analysis, we discern a distinct mode of CTP binding of ecCTPS that differs from eukaryotic counterparts. Combining biochemical assays and structural analysis, we determined and validated the synergistic inhibitory effects of CTP with NADH or adenine on CTPS. Our results expand our comprehension of the diverse regulatory aspects of CTPS and lay a foundation for the design of specific inhibitors targeting prokaryotic CTPS.

14.
Npj Imaging ; 2(1): 18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948153

RESUMO

Patient-derived tumor organoids have emerged as a crucial tool for assessing the efficacy of chemotherapy and conducting preclinical drug screenings. However, the conventional histological investigation of these organoids necessitates their devitalization through fixation and slicing, limiting their utility to a single-time analysis. Here, we use stimulated Raman histology (SRH) to demonstrate non-destructive, label-free virtual staining of 3D organoids, while preserving their viability and growth. This novel approach provides contrast similar to conventional staining methods, allowing for the continuous monitoring of organoids over time. Our results demonstrate that SRH transforms organoids from one-time use products into repeatable models, facilitating the efficient selection of effective drug combinations. This advancement holds promise for personalized cancer treatment, allowing for the dynamic assessment and optimization of chemotherapy treatments in patient-specific contexts.

15.
Bio Protoc ; 14(12): e5015, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948259

RESUMO

All aerial organs in plants originate from the shoot apical meristem, a specialized tissue at the tip of a plant, enclosing a few stem cells. Understanding developmental dynamics within this tissue in relation to internal and external stimuli is of crucial importance. Imaging the meristem at the cellular level beyond very early stages requires the apex to be detached from the plant body, a procedure that does not allow studies in living, intact plants over longer periods. This protocol describes a new confocal microscopy method with the potential to image the shoot apical meristem of an intact, soil-grown, flowering Arabidopsis plant over several days. The setup opens new avenues to study apical stem cells, their interconnection with the whole plant, and their responses to environmental stimuli. Key features • Novel dissection and imaging method of the shoot apical meristem of Arabidopsis. • Procedure performed with intact, soil-grown, flowering plants. • Possibility of long-term live imaging of the shoot apical meristem. • Protocol can be adapted to different plant species.

16.
Nano Lett ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950351

RESUMO

Layered lithiated oxides are promising materials for next generation Li-ion battery cathode materials; however, instability during cycling results in poor performance over time compared to the high capacities theoretically possible with these materials. Here we report the characterizations of a Li1.47Mn0.57Al0.13Fe0.095Co0.105Ni0.095O2.49 high-entropy layered oxide (HELO) with the Li2MO3 structure where M = Mn, Al, Fe, Co, and Ni. Using electron microscopy and X-ray spectroscopy, we identify a homogeneous Li2MO3 structure stabilized by the entropic contribution of oxygen vacancies. This defect-driven entropy would not be attainable in the LiMO2 structure sometimes observed in similar materials as a secondary phase owing to the presence of fewer O sites and a 3+ oxidation state for the metal site; instead, a Li2-γMO3-δ is produced. Beyond Li2MO3, this defect-driven entropy approach to stabilizing novel compositions and phases can be applied to a wide array of future cathode materials including spinel and rock salt structures.

17.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928328

RESUMO

Species in the genus Utricularia are carnivorous plants that prey on invertebrates using traps of leaf origin. The traps are equipped with numerous different glandular trichomes. Trichomes (quadrifids) produce digestive enzymes and absorb the products of prey digestion. The main aim of this study was to determine whether arabinogalactan proteins (AGPs) occur in the cell wall ingrowths in the quadrifid cells. Antibodies (JIM8, JIM13, JIM14, MAC207, and JIM4) that act against various groups of AGPs were used. AGP localization was determined using immunohistochemistry techniques and immunogold labeling. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of the pedestal cell, which may be related to the fact that AGPs regulate the formation of wall ingrowths but also, due to the patterning of the cell wall structure, affect symplastic transport. The presence of AGPs in the cell wall of terminal cells may be related to the presence of wall ingrowths, but processes also involve vesicle trafficking and membrane recycling, in which these proteins participate.


Assuntos
Parede Celular , Mucoproteínas , Proteínas de Plantas , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Tricomas/metabolismo , Folhas de Planta/metabolismo , Lamiales/metabolismo
18.
Animals (Basel) ; 14(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38929346

RESUMO

Continuous ovarian imaging has been proven to be a method for monitoring the development of follicles in vivo. The aim of this study was to evaluate the efficacy of combining ultrasound bio-microscopy (UBM) with an intravital window for follicle imaging in rabbits and to monitor the ovarian dynamic processes. New Zealand White female rabbits (n = 10) received ovarian translocation to a subcutaneous position. The ovarian tissue was sutured onto the abdominal muscles and covered with an intravital window for the continuous monitoring of the follicles using UBM. Results show that physiological changes (red blood cell and white blood cell counts, feed intake, and body weight change) in rabbits induced by surgery returned to normal physiological levels in one week. Furthermore, UBM could provide high-resolution imaging of follicles through the intravital window. Daily monitoring of ovarian dynamic processes for 6 days displayed variabilities in follicle counts and size. Collectively, these results provide a relatively new method to monitor ovarian dynamic processes and to understand the reproductive physiology of female rabbits.

19.
Life (Basel) ; 14(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38929644

RESUMO

Theoretical and experimental approaches have been applied to study the polymer physics underlying the compaction of DNA in the bacterial nucleoid. Knowledge of the compaction mechanism is necessary to obtain a mechanistic understanding of the segregation process of replicating chromosome arms (replichores) during the cell cycle. The first part of this review discusses light microscope observations demonstrating that the nucleoid has a lower refractive index and thus, a lower density than the cytoplasm. A polymer physics explanation for this phenomenon was given by a theory discussed at length in this review. By assuming a phase separation between the nucleoid and the cytoplasm and by imposing equal osmotic pressure and chemical potential between the two phases, a minimal energy situation is obtained, in which soluble proteins are depleted from the nucleoid, thus explaining its lower density. This theory is compared to recent views on DNA compaction that are based on the exclusion of polyribosomes from the nucleoid or on the transcriptional activity of the cell. These new views prompt the question of whether they can still explain the lower refractive index or density of the nucleoid. In the second part of this review, we discuss the question of how DNA segregation occurs in Escherichia coli in the absence of the so-called active ParABS system, which is present in the majority of bacteria. How is the entanglement of nascent chromosome arms generated at the origin in the parental DNA network of the E. coli nucleoid prevented? Microscopic observations of the position of fluorescently-labeled genetic loci have indicated that the four nascent chromosome arms synthesized in the initial replication bubble segregate to opposite halves of the sister nucleoids. This implies that extensive intermingling of daughter strands does not occur. Based on the hypothesis that leading and lagging replichores synthesized in the replication bubble fold into microdomains that do not intermingle, a passive four-excluding-arms model for segregation is proposed. This model suggests that the key for segregation already exists in the structure of the replication bubble at the very start of DNA replication; it explains the different patterns of chromosome arms as well as the segregation distances between replicated loci, as experimentally observed.

20.
J Clin Med ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930136

RESUMO

Background: The aim of the study was to investigate if feto-maternal transfusion was related to the size of the fetal-maternal interface, and, therefore, was larger in twin pregnancy in comparison with singleton pregnancy. Methods: Blood samples from women with singleton (n = 11), and monochorionic (n = 11) and dichorionic (n = 13) twin gestations were tested. Flow cytometry tests with hemoglobin F, glycophorin A, and hemoglobin F and carbonic anhydrase simultaneous staining were used to detect fetal red blood cells and maternal F cells. Results: In all cases, the volume of feto-maternal transfusion was estimated to be low. The highest rate of fetal red blood cells in the maternal circulation was observed in the blood of women with dichorionic twin gestations both before and after delivery. An increase in fetal red blood cells was observed after cesarean section in singletons and twins. The median rate of maternal F cells was 2.23% in singleton, 2.1% in monochorionic and 3.95% in dichorionic pregnancy. Conclusions: Feto-maternal transfusion during pregnancy may be related to the multiplicity and chorionicity of pregnancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA