Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(15): 19129-19136, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37018740

RESUMO

Microwave dielectric ceramics with permittivity (εr) ∼ 20 play an important role in massive multiple-input multiple-output (MIMO) technology in 5G. Although fergusonite-structured materials with low dielectric loss are good candidates for 5G application, tuning the temperature coefficient of resonant frequency (TCF) remains a problem. In the present work, smaller V5+ ions (rV = 0.355 Å, with coordination number (CN) = 4) were substituted for Nb5+ (rNb = 0.48 Å with CN = 4) in the Nd(Nb1-xVx)O4 ceramics, which, according to in situ X-ray diffraction data, lowered the fergusonite-to-scheelite phase transition (TF-S) to 400 °C for x = 0.2. The thermal expansion coefficient (αL) of the high-temperature scheelite phase was +11 ppm/°C, whereas for the low-temperature fergusonite phase, it was + 14 < αL < + 15 ppm/°C. The abrupt change in αL, the associated negative temperature coefficient of permittivity (τε), and the minimum value of εr at TF-S resulted in a near-zero TCF ∼ (+7.8 ppm/°C) for Nd(Nb0.8V0.2)O4 (εr ∼ 18.6 and Qf ∼ 70,100 GHz). A method to design near-zero TCF compositions based on modulation of τε and αL at TF-S is thus demonstrated that may also be extended to other fergusonite systems.

2.
ACS Appl Mater Interfaces ; 14(43): 48897-48906, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36268902

RESUMO

Vanadium(V)-substituted cerium niobate [Ce(Nb1-xVx)O4, CNVx] ceramics were prepared to explore their structure-microwave (MW) property relations and application in C-band dielectric resonator antennas (DRAs). X-ray diffraction and Raman spectroscopy revealed that CNVx (0.0 ≤ x ≤ 0.4) ceramics exhibited a ferroelastic phase transition at a critical content of V (xc = 0.3) from a monoclinic fergusonite structure to a tetragonal scheelite structure (TF-S), which decreased in temperature as a function of x according to thermal expansion analysis. Optimum microwave dielectric performance was obtained for CNV0.3 with permittivity (εr) of ∼16.81, microwave quality factor (Qf) of ∼41 300 GHz (at ∼8.7 GHz), and temperature coefficient of the resonant frequency (TCF) of ∼ -3.5 ppm/°C. εr is dominated by Ce-O phonon absorption in the microwave band; Qf is mainly determined by the porosity, grain size, and proximity of TF-S; and TCF is controlled by the structural distortions associated with TF-S. Terahertz (THz) (0.20-2.00 THz, εr ∼ 12.52 ± 0.70, and tan δ ∼ 0.39 ± 0.17) and infrared measurements are consistent, demonstrating that CNVx (0.0 ≤ x ≤ 0.4) ceramics are effective in the sub-millimeter as well as MW regime. A cylindrical DRA prototype antenna fabricated from CNV0.3 resonated at 7.02 GHz (|S11| = -28.8 dB), matching simulations, with >90% radiation efficiency and 3.34-5.93 dB gain.

3.
ACS Appl Mater Interfaces ; 14(5): 7030-7038, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084812

RESUMO

Microwave dielectric ceramics exhibiting a low dielectric constant (εr), high quality factor (Q × f), and thermal stability, specifically in an ultrawide temperature range (from -40 to +120 °C), have attracted much attention. In addition, the development of 5G communication has caused an urgent demand for electronic devices, such as dielectric resonant antennas. Hence, the feasibility of optimizing the dielectric properties of the SmNbO4 (SN) ceramics by substituting Bi3+ ions at the A site was studied. The permittivity principally hinges on the contribution of Sm/Bi-O to phonon absorption in the microwave range, while the reduced sintering temperature results in a smaller grain size and slightly lower Q × f value. The expanded and distorted crystal cell indicates that Bi3+ doping effectively regulates the temperature coefficient of resonant frequency (TCF) by adjusting the strains (causing the distorted monoclinic structure) of monoclinic fergusonite besides correlating with the permittivity. Moreover, a larger A-site radius facilitates the acquisition of near-zero TCF values. Notably, the (Sm0.875Bi0.125)NbO4 (SB0.125N) ceramic with εr ≈ 21.9, Q × f ≈ 38 300 GHz (at ∼8.0 GHz), and two different near-zero TCF values of -9.0 (from -40 to +60 °C) and -6.6 ppm/°C (from +60 to +120 °C), respectively, were obtained in the microwave band. A simultaneous increase in the phase transition temperature (Tc) and coefficients of thermal expansion (CTEs) by A-site substitution provides the possibility for promising thermal barrier coating (TBC) materials. Then, a cylindrical dielectric resonator antenna (CDRA) with a resonance at 4.86 GHz and bandwidth of 870 MHz was fabricated by the SB0.125N specimen. The exceptional performance shows that the SB0.125N material is a possible candidate for the sub-6 GHz antenna owing to the advantages of low loss and stable temperature.

4.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947115

RESUMO

This paper describes a low-temperature metallization and laser trimming process for microwave dielectric ceramic filters. The ceramic was metalized by electroless copper plating at a temperature lower than those of conventional low-temperature co-fired ceramic (LTCC) and direct bond copper (DBC) methods. Compared with filters made via traditional silver paste sintering, the metal in the holes of the microwave dielectric filters is uniform, smooth, and does not cause clogging nor become detached. Further, the batches of fabricated filters do not require individual inspection, reducing energy, labor, cost, and time requirements. A microwave dielectric filter was then manufactured from the prepared ceramic using a laser trimming machine with a line width and position error within ±50 µm; this demonstrates a more accurately controlled line width than that offered by screen printing. After using HFSS software simulations for preliminary experiments, the microwave dielectric filter was tuned to a target Wi-Fi band of 5.15-5.33 GHz; the return loss was <-10 dB, and the insertion loss was >-3 dB. To implement the real-world process, the laser parameters were optimized. Laser trimming has a higher success rate than traditional manual trimming, and the microwave dielectric filter manufactured here verified the feasibility of this process.

5.
ACS Appl Mater Interfaces ; 13(39): 46866-46874, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559512

RESUMO

Transparent material has been widely used in product design and has seen a large increase in its use. In this paper, a kind of aesthetically decorative 5 GHz Wi-Fi dielectric resonator antenna (DRA) of aluminum oxynitride (AlON) transparent ceramic has been designed. High-quality-factor AlON transparent dielectric ceramics were fabricated by presintering at 1780 °C and further cold isostatic pressing (CIP) under a 200 MPa argon atmosphere. For a 9.0 mm thick specimen, the in-line light transmittance reached 83%. Optimum dielectric constant (εr = 9.32), quality factor (Qf = 47 960) and temperature coefficient (TCF = -51.7 ppm/°C) was achieved in the AlON transparent ceramic by cold isostatic pressing. As a result, the proposed aesthetically decorative DRA can achieve an impedance bandwidth of 32% (4.48-6.19 GHz), a high radiation efficiency of 85%, and a low cross-polarization discrimination (XPD) of -30 dB. To achieve a broad bandwidth, the proposed antenna was excited in its dominant TE111x mode and higher-order TE113x mode. The proposed antenna is thus an excellent candidate for an indoor decoration Wi-Fi antenna.

6.
ACS Appl Mater Interfaces ; 13(15): 17817-17826, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33835792

RESUMO

Structure and dielectric properties of gillespite-type ceramics ACuSi4O10 (A = Ca, Sr, Ba) were investigated by crystal structure refinement, far-infrared reflectivity spectroscopy, and microwave dielectric measurements. A series of (CaxSr1-x)CuSi4O10 (0 < x < 1) ceramics with relative permittivities of 5.70-5.82, Q × f values of 20391-48794 GHz (@ ∼ 13.5 GHz), and τf of -46.3 to -38.9 ppm/°C were synthesized. By Ca2+ substitution for Sr2+ at the A-site, the rigid double-layered copper silicate framework remains stable, resulting in the nearly unchanged relative permittivity, while the [(Ca,Sr)O8] dodecahedron undergoes shrinkage and distortion, which is correlated to the changes in the Q × f and τf values. The normalized bond valence sums indicate that almost all ions are rattling, weakening the bond strengths and enlarging the molecular dielectric polarizability. The fitting of far-infrared reflectivity spectra reveals that the local structure changes suppress the intermediate and low-frequency vibrational modes significantly and improves the contribution from electronic polarization to permittivity. Symmetry breaking of the [(Ca,Sr)O8] dodecahedron conforms to the elevated restoring forces acting on the ions and improves the τf value. The large span in Q × f value may have intricate correlations to local structure changes and defects. Machine learning methods were introduced to explore the decisive structural factors for the Q × f value. A Q × f value prediction model correlated with the A-O2 bond length and the variance of A-O bond lengths was established. The Q × f values of isostructural (BaySr1-y)CuSi4O10 ceramics were predicted and verified by experiments.

7.
ACS Appl Mater Interfaces ; 13(1): 912-923, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356114

RESUMO

Microwave dielectric ceramics are vital for filters, dielectric resonators, and dielectric antennas in the 5G era. It was found that the (Cu1/3Nb2/3)4+ substitution can effectively adjust the TCF (temperature coefficient of resonant frequency) of Li2TiO3 and simultaneously increase its Q × f (Q and f denote the quality factor and the resonant frequency, respectively) value. Notably, excellent microwave dielectric properties (εr (permittivity) ≈ 18.3, Q × f ≈ 77,840 GHz, and TCF ≈ +9.8 ppm/°C) were achieved in the Li2Ti0.8(Cu1/3Nb2/3)0.2O3 (LTCN0.2) ceramic sintered at 1140 °C. Additionally, the sintering temperature of LTCN0.2 was reduced to 860 °C by the addition of 3 wt % H3BO3, exhibiting superior microwave dielectric properties (εr ≈ 21.0, Q × f ≈ 51,940 GHz, and TCF ≈ 1.4 ppm/°C) and being chemically compatible with silver. Moreover, LTCN0.2 + 3 wt % H3BO3 ceramics were designed as a patch antenna and a dielectric resonator antenna, both of which showed high simulated radiation efficiencies (88.4 and 93%) and gains (4.1 and 4.03 dBi) at the center frequencies (2.49 and 10.19 GHz). The LTCN0.2 + 3 wt % H3BO3 materials have promising future application for either 5G mobile communication devices and/or in low-temperature co-fired ceramic technology owing to their high Q, low sintering temperature, small density, and good temperature stability.

8.
Materials (Basel) ; 13(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339159

RESUMO

The electronics related to the fifth generation mobile communication technology (5G) are projected to possess significant market potential. High dielectric constant microwave ceramics used as filters and resonators in 5G have thus attracted great attention. The Ba6-3x(Sm1-yNdy)8+2xTi18O54 (x = 2/3) ceramic system has aroused people's interest due to its underlying excellent microwave dielectric properties. In this paper, the relationships between the dielectric constant, Nd-doped content, sintering temperature and the density of Ba6-3x(Sm1-yNdy)8+2xTi18O54 (x = 2/3) ceramics were studied. The linear regression equation was established by statistical product and service solution (SPSS) data analysis software, and the factors affecting the dielectric constant have been analyzed by using the enter and stepwise methods, respectively. It is found that the model established by the stepwise method is practically significant with Y = -71.168 + 6.946x1 + 25.799x3, where Y, x1 and x3 represent the dielectric constant, Nd content and the density, respectively. According to this model, the influence of density on the dielectric constant is greater than that of Nd doping concentration. We bring the linear regression analysis method into the research field of microwave dielectric ceramics, hoping to provide an instructive for the optimization of ceramic technology.

9.
Materials (Basel) ; 12(9)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035538

RESUMO

Dense (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 (100-x) wt.% (Bi0.95Li0.05)(V0.9Mo0.1)O4 (BLVMO)-x wt.% Na2Mo2O7 (NMO) composite ceramics were successfully fabricated through cold sintering at 150 °C under at 200 MPa for 30 min. X-ray diffraction, back-scattered scanning electron microscopy, and Raman spectroscopy not only corroborated the coexistence of BLVMO and NMO phases in all samples, but also the absence of parasitic phases and interdiffusion. With increasing NMO concentration, the relative pemittivity (εr) and the Temperature Coefficient of resonant Frequency (TCF) decreased, whereas the Microwave Quality Factor (Qf) increased. Near-zero TCF was measured for BLVMO-20wt.%NMO composites which exhibited εr ~ 40 and Qf ~ 4000 GHz. Finally, a dielectric Graded Radial INdex (GRIN) lens was simulated using the range of εr in the BLVMO-NMO system, which predicted a 70% aperture efficiency at 26 GHz, ideal for 5G applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA