Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biosens Bioelectron ; 261: 116474, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870827

RESUMO

Multichannel arrays capable of real-time sensing of neuromodulators in the brain are crucial for gaining insights into new aspects of neural communication. However, measuring neurochemicals, such as dopamine, at low concentrations over large areas has proven challenging. In this research, we demonstrate a novel approach that leverages the scalability and processing power offered by microelectrode array devices integrated with a functionalized, high-density microwire bundle, enabling electrochemical sensing at an unprecedented scale and spatial resolution. The sensors demonstrate outstanding selective molecular recognition by incorporating a selective polymeric membrane. By combining cutting-edge commercial multiplexing, digitization, and data acquisition hardware with a bio-compatible and highly sensitive neurochemical interface array, we establish a powerful platform for neurochemical analysis. This multichannel array has been successfully utilized in vitro and ex vivo systems. Notably, our results show a sensing area of 2.25 mm2 with an impressive detection limit of 820 pM for dopamine. This new approach paves the way for investigating complex neurochemical processes and holds promise for advancing our understanding of brain function and neurological disorders.


Assuntos
Técnicas Biossensoriais , Dopamina , Técnicas Eletroquímicas , Limite de Detecção , Microeletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Dopamina/análise , Animais , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Encéfalo/metabolismo , Humanos , Neurotransmissores/análise
2.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38676040

RESUMO

The advantageous applications of magnetic bistable microwires have emerged during long-lasting research. They have a wide range of applications in the scientific sphere or technical practice. They can be used for various applications, including magnetic memories, biomedicine, and sensors. This manuscript is focused on the last-mentioned application of microwires-sensors-discussing various digital signal processing techniques used in practical applications. Thanks to the highly sensitive properties of microwires and their two stable states of magnetization, it is possible to perform precise measurements with less demanding digital processing. The manuscript presents four practical signal-processing methods of microwire response using three different experiments. These experiments are focused on detecting the signal in a simple environment without an external magnetic background, measuring with the external background of a ferromagnetic core, and measuring in harsh conditions with a strong magnetic background. The experiments aim to propose the best method under various conditions, emphasizing the quality and signal processing speed of the microwire signal.

3.
Micromachines (Basel) ; 15(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542619

RESUMO

When machining high-speed steels (HSS) with micro-wire electrical discharge machining (micro-WEDM), high surface quality is achieved as standard. The value of the roughness parameter Ra is less than 0.2 µm. However, the problem is the performance of the electroerosion process (MRR), which is low. This problem is related to the mechanical and physical properties of the HSS in combination with the setting of the main technological parameters (MTP). The proposed solution to eliminate this problem relies on the selection of proper procedures for the determination of optimization criteria in relation to Ra and MTP, with the inclusion of properties of the machined material. The solution consisted in the identification of four significant physical (ρ, κ) and mechanical (Rm, HRC) indicators of HSS properties, on the basis of which a suitable combination of the process output parameters Ra and MRR can be determined through established mathematical regression models using simulation and optimization. In the next step, the proper values of the MTP output process parameter settings, which correspond to the optimized output parameters Ra and MRR during machining of HSS by micro-WEDM technology, were then obtained by the same approach.

4.
Small ; : e2311726, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497508

RESUMO

Advances in the Internet of Things (IoT) technology have driven the demand for miniaturized electronic devices, prompting research on small-scale energy-storage systems. Micro-supercapacitors (MSCs) stand out in this regard because of their compact size, high power density, high charge-discharge rate, and extended cycle life. However, their limited energy density impedes commercialization. To resolve this issue, a simple and innovative approach is reported herein for fabricating highly efficient on-chip MSCs integrated with nanoporous metal microwires formed by dielectrophoresis (DEP)-driven gold nanoparticle (AuNP) assembly. Placing a water-based AuNP suspension onto interdigitated electrodes and applying an alternating voltage induces in-plane porous microwire formation in the electrode gap. The DEP-induced AuNP assembly and the gold microwire (AuMW) growth rate can be adjusted by controlling the applied alternating voltage and frequency. The microwire-integrated MSC (AuMW-MSC) electrically outperforms its unmodified counterpart and exhibits a 30% larger electrode area, along with 72% and 78% higher specific and areal capacitances, respectively, than a microwire-free MSC. Additionally, AuMW-MSC achieves maximum energy and power densities of 3.33 µWh cm-2 and 2629 µW cm-2 , respectively, with a gel electrolyte. These findings can help upgrade MSCs to function as potent energy-storage devices for small electronics.

5.
ACS Appl Mater Interfaces ; 16(8): 10398-10406, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38380978

RESUMO

The rapid evolution of the Internet of Things has engendered increased requirements for low-cost, self-powered UV photodetectors. Herein, high-performance self-driven UV photodetectors are fabricated by designing asymmetric metal-semiconductor-metal structures on the high-quality large-area CsCu2I3 microwire arrays. The asymmetrical depletion region doubles the photocurrent and response speed compared to the symmetric structure device, leading to a high responsivity of 233 mA/W to 355 nm radiation. Notably, at 0 V bias, the asymmetric device produces an open-circuit voltage of 356 mV and drives to a short-circuit current of 372 pA; meanwhile, the switch ratio (Iph/Idark) reaches up to 103, indicating its excellent potential for detecting weak light. Furthermore, the device maintains stable responses throughout 10000 UV-light switch cycles, with negligible degradation even after 90-day storage in air. Our work establishes that CsCu2I3 is a good candidate for self-powered UV detection and thoroughly demonstrates its potential as a passive device.

6.
Vasc Endovascular Surg ; 58(5): 567-570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38240584

RESUMO

Coil migration during endovascular embolization is a complication that can result in thromboembolic occlusion leading to potentially large infarcts if not removed. Microsnares are commonly used to remove migrated coils. Current techniques, however, struggle in cases where the microsnare is unable to loop over and secure a free end of the coil. We present a case in which a microsnare combined with a microwire successfully removed a migrated coil in a patient with a bleeding hepatic pseudoaneurysm post-embolization. This technique proved beneficial when traditional methods were insufficient, especially in small vessels or coil packs that cannot be snared. The synergy of the microsnare and microwire technique presents a promising solution for challenging migrated coil retrievals.


Assuntos
Falso Aneurisma , Remoção de Dispositivo , Embolização Terapêutica , Migração de Corpo Estranho , Humanos , Migração de Corpo Estranho/etiologia , Migração de Corpo Estranho/diagnóstico por imagem , Migração de Corpo Estranho/terapia , Migração de Corpo Estranho/cirurgia , Embolização Terapêutica/instrumentação , Resultado do Tratamento , Falso Aneurisma/diagnóstico por imagem , Falso Aneurisma/terapia , Falso Aneurisma/etiologia , Artéria Hepática/diagnóstico por imagem , Masculino , Hemorragia/etiologia , Hemorragia/terapia , Idoso , Desenho de Equipamento , Feminino
7.
Nanomaterials (Basel) ; 14(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276749

RESUMO

Flexible strain sensors have a wide range of applications, such as human motion monitoring, wearable electronic devices, and human-computer interactions, due to their good conformability and sensitive deformation detection. To overcome the internal stress problem of solid sensing materials during deformation and prepare small-sized flexible strain sensors, it is necessary to choose a more suitable sensing material and preparation technology. We report a simple and high-performance flexible strain sensor based on liquid metal nanoparticles (LMNPs) on a polyimide substrate. The LMNPs were assembled using the femtosecond laser direct writing technology to form liquid metal microwires. A wearable strain sensor from the liquid metal microwire was fabricated with an excellent gauge factor of up to 76.18, a good linearity in a wide sensing range, and a fast response/recovery time of 159 ms/120 ms. Due to these extraordinary strain sensing performances, the strain sensor can monitor facial expressions in real time and detect vocal cord vibrations for speech recognition.

8.
Interv Neuroradiol ; : 15910199231217769, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192118

RESUMO

OBJECTIVE: To investigate the therapeutic effect of intra-arterial microguidewire electrocoagulation on intracranial vascular diseases. METHODS: Data from 10 patients with cerebral aneurysms between May 2018 and September 2022 were analysed. Patients were treated with endovascular coil embolisation and microguidewire electrocoagulation. XperCT scans were conducted to identify new intracranial haemorrhage, infarction and hydrocephalus. Follow-up examinations were conducted 1, 3, 6 and 12 months after discharge. RESULTS: After the patients received electrocoagulation for different durations, Raymond Grade 1 embolisation was achieved in all 10 patients. No complications, such as haemorrhage, infarction or hydrocephalus, were found during or after surgery. Ten patients were followed up for 6-12 months, and none had any symptoms or new neurological dysfunction 1 month after their operation. Among them, nine were followed up for 12 months, and digital subtraction angiography showed no recurrence of aneurysms or occlusion of parent arteries. CONCLUSION: Intra-arterial microguidewire electrocoagulation can be used as a supplementary treatment for cerebral aneurysms. In cases of incomplete lesion embolisation and cases where tamponade treatment cannot continue, immediate thrombosis may occur. Thus, intra-arterial microguidewire electrocoagulation can help achieve patients' treatment goals.

9.
Sensors (Basel) ; 24(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203171

RESUMO

In this study, we investigated the effects of Cu doping on the performance of CoFeSiB amorphous microwires as the core of a fluxgate magnetometer. The noise performance of fluxgate sensors primarily depends on the crystal structure of constituent materials. CoFeSiB amorphous microwires with varying Cu doping ratios were prepared using melt-extraction technology. The microstructure of microwire configurations was observed using transmission electron microscopy, and the growth of nanocrystalline was examined. Additionally, the magnetic performance of the microwire and the noise of the magnetic fluxgate sensors were tested to establish the relationship between Cu-doped CoFeSiB amorphous wires and sensor noise performance. The results indicated that Cu doping triggers a positive mixing enthalpy and the reduced difference in the atomic radius that enhances the degree of nanocrystalline formation within the system; differential scanning calorimetry analysis indicates that this is due to Cu doping reducing the glass formation capacity of the system. In addition, Cu doping affects the soft magnetic properties of amorphous microwires, with 1% low-doping samples exhibiting better soft magnetic properties. This phenomenon is likely the result of the interaction between nanocrystalline organization and magnetic domains. Furthermore, a Cu doping ratio of 1% yields the best noise performance, aligning with the trend observed in the material's magnetic properties. Therefore, to reduce the noise of the CoFeSiB amorphous wire sensor, the primary goal should be to reduce microscopic defects in amorphous alloys and enhance soft magnetic properties. Cu doping is a superior preparation method which facilitates control over preparation conditions, ensuring the formation of stable amorphous wires with consistent performance.

10.
J Neurosci Methods ; 402: 110017, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38036184

RESUMO

BACKGROUND: Human intracranial microwire recordings allow measurement of neuronal activity in human subjects at a fine temporal and spatial scale. The recorded extracellular potentials represent a mixture of action potentials from nearby neurons, local field potentials, and other noise sources. Signal processing of these recordings is used to separate the activity of putative single neurons from other background and noise. To better understand the separation of single neuron activity, one approach is to simulate the signals produced by neurons firing action potentials combined with background activity and noise. NEW METHOD: This paper characterizes the background activity and noise in human intracranial microwire recordings and presents an accurate and efficient method of simulation using an infinite impulse response filter to color white noise. RESULTS AND COMPARISON: This method reproduces the power spectral density of the background activity and noise over a frequency range of 1-5000 Hz and is over 200 times faster than previously used methods. It thus facilitates large scale studies of variation of noise sources, field potentials, and processing parameters. It performs equivalently in terms of spike sorting to simulation using white noise. Another advantage is that the simulated signals are known to arise from a pseudorandom number generator and cannot be the result of detecting simulated background spiking activity. CONCLUSIONS: This approach provides a rapid and accurate method of simulating background noise and neural activity in human intracranial microwire recordings. It is suitable for use in large scale simulations to study spike sorting in this type of recording.


Assuntos
Neurônios , Processamento de Sinais Assistido por Computador , Humanos , Neurônios/fisiologia , Simulação por Computador , Potenciais de Ação/fisiologia , Microeletrodos
11.
Interv Neuroradiol ; : 15910199231204923, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796767

RESUMO

BACKGROUND: Current neurointerventional procedures are expanding the use of large bore microcatheters, of up to 0.033" inner diameters, to accommodate intrasaccular flow disruptors or neck-bridging devices, including flow diverters. The use of large bore microwires may mitigate the ledge gap between wire and catheter, facilitate navigation and offer support in distal tortuous anatomy. We aim to report our early experience using the novel Aristotle (Scientia Vascular, West Valley City, UT) 18 and 24 microwires in neurovascular interventions. METHODS: We analysed neurointerventional procedures in which the Aristotle 18 and 24 microwires were used at a single centre. Prospectively collected data, from March 2022 to February 2023, including patient's clinical outcome (successful target vessel, aneurysm catheterisation, peri-procedural complications (thromboembolic, haemorrhagic, vessel dissection or perforation) were analysed. RESULTS: Overall, the use of Aristotle 18 and 24 microwires was recorded in 84 neurointerventional procedures during the study period, including endovascular aneurysm treatment (n = 30), endovascular thrombectomy (n = 46), dural venous sinus manometry/stent placement (n = 7), and extracranial carotid artery stent placement (n = 1). The Aristotle 18 microwire was used in conjunction with 0.021" microcatheters and the Aristotle 24 microwire with the 0.027 or 0.033" microcatheters. In all cases (100%), the target vessel or aneurysm was reached with the microwire, allowing seamless advancement of the selected microcatheters. No procedure related complications were recorded. CONCLUSIONS: The use of the Aristotle 18 and 24 microwires in neurointerventional procedures is feasible and safe. The microwires provide reduced ledge gap, improved torquability, support and safety over standard 0.014" microwires.

12.
Anal Chim Acta ; 1276: 341589, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573093

RESUMO

Routine monitoring of inorganic arsenic in groundwater using sensitive, reliable, easy-to-use and affordable analytical methods is integral to identifying sources, and delivering appropriate remediation solutions, to the widespread global issue of arsenic pollution. Voltammetry has many advantages over other analytical techniques, but the low electroactivity of arsenic(V) requires the use of either reducing agents or relatively strong acidic conditions, which both complicate the analytical procedures, and require more complex material handling by skilled operators. Here, we present the voltammetric determination of total inorganic arsenic in conditions of near-neutral pH using a new commercially available 25 µm diameter gold microwire (called the Gold Wirebond), which is described here for the first time. The method is based on the addition of low concentrations of permanganate (10 µM MnO4-) which fulfils two roles: (1) to ensure that all inorganic arsenic is present as arsenate by chemically oxidising arsenite to arsenate and, (2) to provide a source of manganese allowing the sensitive detection of arsenate by anodic stripping voltammetry at a gold electrode. Tests were carried out in synthetic solutions of various pH (ranging from 4.7 to 9) in presence/absence of chloride. The best response was obtained in 0.25 M chloride-containing acetate buffer resulting in analytical parameters (limit of detection of 0.28 µg L-1 for 10 s deposition time, linear range up to 20 µg L-1 and a sensitivity of 63.5 nA ppb-1. s-1) better than those obtained in acidic conditions. We used this new method to measure arsenic concentrations in contrasting groundwaters: the reducing, arsenite-rich groundwaters of India (West Bengal and Bihar regions) and the oxidising, arsenate-rich groundwaters of Mexico (Guanajuato region). Very good agreement was obtained in all groundwaters with arsenic concentrations measured by inductively coupled plasma-mass spectrometry (slope = +1.029, R2 = 0.99). The voltammetric method is sensitive, faster than other voltammetric techniques for detection of arsenic (typically 10 min per sample including triplicate measurements and 2 standard additions), easier to implement than previous methods (no acidic conditions, no chemical reduction required, reproducible sensor, can be used by non-voltammetric experts) and could enable cheaper groundwater surveying campaigns with in-the-field analysis for quick data reporting, even in remote communities.

13.
ACS Appl Mater Interfaces ; 15(32): 38938-38945, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531472

RESUMO

Polyaniline-based conductive polymers are promising electrochemical sensor materials due to their unique physical and chemical properties, such as good gas absorption, low dielectric loss, and chemical and thermal stabilities. The sensing performance is highly dependent on the structure and dimensions of the polyaniline-based conductive polymers. Although in situ oxidative polymerization combined with the self-assembly process has become one of the main processes for the preparation of flexible polyaniline-based gas sensors, how to prepare polyaniline materials into uniformly arranged microwire arrays is still an urgent problem. In this paper, an in-depth study was conducted on the preparation of polyaniline microwire arrays by combining a wettability interface dewetting process and a liquid-film-induced capillary bridges method. The factors influencing the preparation of polyaniline microwire arrays, including solution concentration, template width, evaporation temperature, and evaporation time, were investigated in detail. The wire formation rates were recorded from the results of SEM images. 100% microwires formation rate can be obtained by using a 1.0 mg mL-1 concentration of polyaniline solution and a 10 µm silicon template at an evaporation temperature of 80 °C for 18 h. The prepared microwire arrays can realize sulfur dioxide sensing at room temperature with a response speed of about 20 s and can detect sulfur dioxide gas as low as 1 ppm. Thus, the liquid-film-induced capillary bridge method shows a new possibility to prepare gas sensor devices for insoluble polymers.

14.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445057

RESUMO

X-ray detectors have numerous applications in medical imaging, industrial inspection, and crystal structure analysis. Gallium oxide (Ga2O3) shows potential as a material for high-performance X-ray detectors due to its wide bandgap, relatively high mass attenuation coefficient, and resistance to radiation damage. In this study, we present Sn-doped Ga2O3 microwire detectors for solar-blind and X-ray detection. The developed detectors exhibit a switching ratio of 1.66 × 102 under X-ray irradiation and can operate stably from room temperature to 623 K, which is one of the highest reported operating temperatures for Ga2O3 X-ray detectors to date. These findings offer a promising new direction for the design of Ga2O3-based X-ray detectors.

15.
Nano Lett ; 23(15): 6966-6972, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498293

RESUMO

Coherent multiwave mixing is in demand for optical frequency conversion, imaging, quantum information science, etc., but has rarely been demonstrated in solid-state systems. Here, we observed three- and five-wave mixing (5WM) in a c-axis growth zinc oxide microwire on a Au film with picosecond pulses in the near-infrared region. An output 5WM of 4.7 × 10-7 µW, only 2-3 orders smaller than the three-wave mixing, is achieved when the excitation power is as low as 1.5 mW and the peak power density as weak as ∼107 W/cm2. The excitation power dependence of 5WM agrees well with the perturbation limit under the low intensity but exhibits a strong deviation at a high pumping power. This extraordinary behavior is attributed to the cooperative resonant enhancement effect when pumping in the near-infrared range. Our study offers a potential solid-state platform for on-chip multiwave mixing and quantum nonlinear optics, such as generating many-photon entangled states or the construction of photon-photon quantum logic gates.

16.
Adv Mater ; 35(22): e2300077, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36930178

RESUMO

Excellent through-plane thermally conductive composites are highly demanded for efficient heat dissipation. Giant sheets have large crystalline domain and significantly reduce interface phonon scattering, making them promising to build highly thermally conductive composites. However, realizing vertical orientation of giant sheets remains challenging due to their enormous mass and huge hydrodynamic drag force. Here, we achieve highly vertically ordered liquid crystals of giant graphite oxide (more than 100 µm in lateral dimension) by microwire shearing, which endows the composite with a recorded through-plane thermal conductivity of 94 W m-1 K-1 . Microscale shearing fields induced by vertical motion of microwires conquer huge hydrodynamic energy barrier and vertically reorient giant sheets. The resulting liquid crystals exhibit extremely retarded relaxation and impart large-scale vertical array with bidirectional ordering degree as high as 0.82. The graphite array-based composites demonstrate an ultrahigh thermal enhancement efficiency of over 35 times per unit volume. Furthermore, the composites improve cooling efficiency by 93% for thermal management tests compared to commercial thermal interface materials. This work offers a novel methodology to precisely manipulate the orientation of giant particles and promote large-scale fabrication of vertical array with advanced functionalities.

17.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985878

RESUMO

An electrochemical immunosensor has been developed for the rapid detection and identification of potentially harmful bacteria in food and environmental samples. This study aimed to fabricate a microwire-based electrochemical immunosensor (MEI sensor) for selective detection of Escherichia coli and Staphylococcus aureus in microbial cocktail samples using dielectrophoresis (DEP)-based cell concentration. A gold-coated tungsten microwire was functionalized by coating polyethylenimine, single-walled carbon nanotube (SWCNT) suspension, streptavidin, biotinylated antibodies, and then bovine serum albumin (BSA) solutions. Double-layered SWCNTs and 5% BSA solution were found to be optimized for enhanced signal enhancement and nonspecific binding barrier. The selective capture of E. coli K12 or S. aureus cells was achieved when the electric field in the bacterial sample solution was generated at a frequency of 3 MHz and 20 Vpp. A linear trend of the change in the electron transfer resistance was observed as E. coli concentrations increased from 5.32 × 102 to 1.30 × 108 CFU/mL (R2 = 0.976). The S. aureus MEI sensor fabricated with the anti-S. aureus antibodies also showed an increase in resistance with concentrations of S. aureus (8.90 × 102-3.45 × 107 CFU/mL) with a correlation of R2 = 0.983. Salmonella typhimurium and Listeria monocytogenes were used to evaluate the specificity of the MEI sensors. The functionalization process developed for the MEI sensor is expected to contribute to the sensitive and selective detection of other harmful microorganisms in food and environmental industries.

18.
Nanotechnology ; 34(14)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36621847

RESUMO

Copper-based halide perovskites have shown great potential in lighting and photodetection due to their excellent photoelectric properties, good stability and lead-free nature. However, as an important piece of copper-based perovskites, the synthesis and application of RbCu2I3have never been reported. Here, we demonstrate the synthesis of high-quality RbCu2I3microwires (MWs) by a fast-cooling hot saturated solution method. The prepared MWs exhibit an orthorhombic structure with a smooth surface. Optical measurements show the RbCu2I3MWs have a sharp ultraviolet absorption edge with 3.63 eV optical band gap and ultra-large stokes shift (300 nm) in photoluminescence. The subsequent photodetector based on a single RbCu2I3MW shows excellent ultraviolet detection performance. Under the 340 nm illumination, the device shows a specific detectivity of 5.0 × 109Jones and a responsivity of 380 mA·W-1. The synthesis method and physical properties of RbCu2I3could be a guide to the future optoelectronic application of the new material.

19.
Interv Neuroradiol ; 29(5): 617, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35331043

RESUMO

Larger microcatheters are being used with increasing frequency in routine neurovascular procedures. Navigating catheters safely and effectively to the target intracranial vessels can be a challenge when using conventional 0.014″ microwires. A new family of 0.024″ Aristotle 24 microwires (Scientia Vascular, West Valley City, UT) specifically designed for intracranial navigation were recently introduced. These microwires offer significant technical advantages over the standard 0.014″ microwires, including a reduced ledge gap, improved torquability and support, and overall safety. This video case series contains several illustrative cases to demonstrate the features of the novel Aristotle 24 microwire for use in endovascular neurointervention.


Assuntos
Catéteres , Procedimentos Endovasculares , Humanos
20.
Neurosurg Focus Video ; 7(2): V3, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36425262

RESUMO

A man in his 60s presented with severe ophthalmoparesis and loss of visual acuity in his right eye. He was found to have a giant aneurysm of the cavernous internal carotid artery (ICA). Treatment with a flow diverter was recommended. The aneurysm caused matricidal outflow restriction of the ICA. Microwire and microcatheter access through the aneurysm was challenging, requiring multiple wires, stentriever reduction, and more. Eventually, a construct of 3 Pipeline embolization devices was created across the aneurysm. Troubleshooting access across giant aneurysms is an important part of treatment. Informed consent was obtained for the procedure and for publication. The video can be found here: https://stream.cadmore.media/r10.3171/2022.7.FOCVID2258.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA