Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029514

RESUMO

Aging is associated with an increase in stroke risk. Melatonin, a potent free radical scavenger and broad spectrum antioxidant, has been shown to counteract inflammation and apoptosis in brain injury. However, little is known on the possible protective effects of melatonin in aged individuals affected by brain ischemia. Also, using melatonin before or after an ischemic stroke may result in significantly different molecular outcomes. The objective of the present study was to compare the effects of pre-ischemia vs. post-ischemia melatonin administration in an ischemic lesion in the cortex and hippocampus of senescent Wistar rats. An obstruction of the middle cerebral artery (MCA) to 18-month-old animals was performed. In general, animals treated with melatonin from 24 h prior to surgery until 7 days after the surgical procedure (PrevT) experienced a significant decrease in the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), glial fibrillary acidic protein (GFAP), Bcl-2-associated death promoter (BAD), and Bcl-2-associated X protein (BAX) in both cortex and hippocampus, while hippocampal levels of sirtuin 1 (SIRT1) and B-cell lymphoma 2 (Bcl-2) increased. Treatment of animals with melatonin only after surgery (AT) resulted in similar effects, but to a lesser extent than in the PrevT group. In any case, melatonin acted as a valuable therapeutic agent protecting aged animals from the harmful effects of cerebral infarction.


Assuntos
Envelhecimento/patologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Melatonina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/complicações , Isquemia Encefálica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/complicações , Inflamação/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Melatonina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
2.
Biores Open Access ; 4(1): 407-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26594596

RESUMO

Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription-polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1ß, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA