Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39434598

RESUMO

India is dealing with both nutritional and agricultural issues. The maximum area of agricultural land with irrigation capabilities has been largely utilized, while the amount of dry land is expanding. The influence is distinct on farmer's livelihoods and earnings, which ultimately affects nutritional security. In order to attain nutritional security and the goal of SDG (Sustainable Development Goals), millets are sustainable solutions, with respect to high nutritional content, bioactive and medicinal properties, and climate resilience. The nutrient profile of millet includes 60%-70% carbohydrate content, 3.5%-5.2% fat, and 7.52%-12.1% protein sources. A wide spectrum of amino acids, including cysteine, isoleucine, arginine, leucine, tryptophan, lysine, histidine, methionine, tyrosine, phenylalanine, threonine, and valine are generally present in millets. Mineral content in millets includes calcium, phosphorus, potassium, sodium, and magnesium. Additionally, millets are an excellent source of bioactive molecules such as polyphenol, phenolic acid, flavonoids, active peptides, and soluble fiber, which have a wide range of therapeutic applications, including the prevention of free radical damage, diabetes, anti-microbial, anti- biofilm, and anti-cancer effects. This review will focus on the nutritional profile and health benefits of millet considering the present-day food security problems.

2.
Indian J Community Med ; 49(5): 665-668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39421505

RESUMO

Millets are a group of small, drought-resistant grains that have been grown for more than thousands of years. They are highly nutritious, rich in essential vitamins and minerals, and have gained attention in recent years due to their potential to address global food security and environmental challenges. This review article provides an overview of millets, their nutritional benefits, environmental advantages, and their role in promoting sustainable agriculture and processing of millets. The article also discusses the various types of millets, their cultivation, and their potential to improve human health and combat malnutrition.

3.
Planta ; 260(4): 103, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304579

RESUMO

MAIN CONCLUSION: Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.


Assuntos
Mudança Climática , Produtos Agrícolas , Genômica , Milhetes , Melhoramento Vegetal , Milhetes/genética , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Biodiversidade , Segurança Alimentar , Agricultura/métodos , Multiômica
4.
J Biotechnol ; 395: 110-121, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39343056

RESUMO

The rapid depletion of conventional fuel resources and rising energy demand has accelerated the search for alternative energy sources. Further, the expanding need to use bioenergy crops for sustainable fuel production has enhanced the competition for agricultural land, raising the "food vs. fuel" competition. Considering this, producing bioenergy crops on marginal land has a great perspective for achieving sustainable bioenergy production and mitigating the negative impacts of climate change. C4 crops are dual-purpose crops with better efficiency to fix atmospheric CO2 and convert solar energy into lignocellulosic biomass. Of these, millets have gained worldwide attention due to their climate resilience and nutraceutical properties. Due to close synteny with contemporary C4 bioenergy crops, millets are being considered a model crop for studying diverse agronomically important traits associated with biomass production. Millets can be cultivated on marginal land with minimum fertilizer inputs and maximum biomass production. In this regard, advanced molecular approaches, including marker-assisted breeding, multi-omics approaches, and gene-editing technologies, can be employed to genetically engineer these crops for enhanced biofuel production efficiency. The current study aims to provide an overview of millets as a sustainable bioenergy source and underlines the significance of millets as a C4 model to elucidate the genes and pathways involved in lignocellulosic biomass production using advanced molecular biology approaches.

5.
Planta ; 260(3): 57, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039303

RESUMO

MAIN CONCLUSION: A genetic linkage map representing the pearl millet genome was constructed with SNP markers. Major and stable QTL associated with flowering, number of productive tillers, ear head length, and test weight were mapped on chromosomes 1 and 3. Pearl millet (Pennisetum glaucum) is a major cereal and fodder crop in arid and semi-arid regions of Asia and Africa. Agronomic traits are important traits in pearl millet breeding and genetic and environmental factors highly influence them. In the present study, an F9 recombinant inbred line (RIL) population derived from a cross between PT6029 and PT6129 was evaluated for agronomic traits in three environments. Utilizing a genotyping by sequencing approach, a dense genetic map with 993 single nucleotide polymorphism markers covering a total genetic distance of 1035.4 cM was constructed. The average interval between the markers was 1.04 cM, and the seven chromosomes varied from 115.39 to 206.72 cM. Quantitative trait loci (QTL) mapping revealed 35 QTL for seven agronomic traits, and they were distributed on all pearl millet chromosomes. These QTL individually explained 11.35 to 26.71% of the phenotypic variation, with LOD values ranging from 2.74 to 5.80. Notably, four QTL (qDFF1.1, qNPT3.1, qEHL3.1, and qTW1.1) associated with days to fifty percent flowering, the number of productive tillers, ear head length, and test weight were found to be major and stable QTL located on chromosomes 1 and 3. Collectively, our results provide an important base for understanding the genetic architecture of agronomic traits in pearl millet, which is useful for accelerating the genetic gain toward crop improvement.


Assuntos
Mapeamento Cromossômico , Pennisetum , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Pennisetum/genética , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Fenótipo , Ligação Genética , Genoma de Planta/genética , Cromossomos de Plantas/genética , Genótipo
6.
Food Chem ; 458: 140240, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964112

RESUMO

Five different millets (foxtail, little, barnyard, kodo and browntop) with and without sprouting were subjected to flaking. Phytic acid and phenolic content tends to decrease significantly, whereas antioxidant activity increased up to 77.32% on flaking of millets. A significant decrease in peak and final viscosity was observed in millet flakes. A-type diffraction pattern was predominant for unsprouted millets whereas the flaked millets showed V-type crystallinity. The protein digestibility significantly increased up to 37.77% in flakes made from sprouted millets. The mineral bioavailability upon flaking of millets increased, especially Ca (88.22% for little), Fe (43.04% for barnyard) and Zn (61.77% for kodo), which is attributed to the reduction in phytic acid. Flaking, however, led to an increase in rapidly and slowly digestible starch with a corresponding decrease in resistant starch. Among the unsprouted and sprouted millet flakes, foxtail received the highest sensory scores for overall acceptability.


Assuntos
Digestão , Milhetes , Ácido Fítico , Ácido Fítico/química , Ácido Fítico/metabolismo , Milhetes/química , Humanos , Manipulação de Alimentos , Amido/química , Amido/metabolismo , Temperatura Alta , Antioxidantes/química , Viscosidade
7.
Nutrients ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892606

RESUMO

The prevalence of anaemia in India remains high in children, especially those in rural areas, and in women of childbearing age, and its impairment of neurological development can have serious lifelong effects. It is concerning that the most recent official data (2019-21) indicate an increased prevalence compared with 2015-16. There is also considerable variability in childhood anaemia between Indian states with socioeconomic factors, such as wealth and education contributing to the risk of anaemia among adolescent women and their children. Dietary iron deficiency is often regarded as the main contributor to anaemia but increasing evidence accumulated from the authors' ongoing literature database coupled with recent literature research suggests that it has a multifactorial aetiology, some of which is not related to nutrition. This narrative review focused on these multifactorial issues, notably the contribution of vitamin B12/folate deficiency, which also has a high prevalence in India. It was also noted that the dietary intake of bioavailable iron remains an important contributor for reducing anaemia, and the role of millets as an improved iron source compared to traditional staple cereals is briefly discussed. The overall conclusion is that anaemia has a multifactorial aetiology requiring multifactorial assessment that must include assessment of vitamin B12 status.


Assuntos
Anemia , Deficiência de Ácido Fólico , Deficiência de Vitamina B 12 , Humanos , Índia/epidemiologia , Prevalência , Deficiência de Vitamina B 12/epidemiologia , Feminino , Anemia/epidemiologia , Anemia/etiologia , Deficiência de Ácido Fólico/epidemiologia , Adolescente , Criança , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/etiologia , Masculino , Ferro da Dieta/administração & dosagem , Estado Nutricional , Adulto , Fatores de Risco , Dieta/efeitos adversos , Vitamina B 12/administração & dosagem , Vitamina B 12/sangue
8.
Planta ; 260(1): 29, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879859

RESUMO

MAIN CONCLUSION: The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.


Assuntos
Secas , Milhetes/fisiologia , Estresse Fisiológico , Fotossíntese/fisiologia , Mudança Climática , Água/metabolismo , Água/fisiologia , Adaptação Fisiológica , Produtos Agrícolas/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Resistência à Seca
9.
Cureus ; 16(4): e59283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38813307

RESUMO

Many studies, including case studies, meta-analyses, and randomized trials, have demonstrated the benefits of a low-carb diet in the management of obesity, diabetes, and pre-diabetes. Numerous studies suggest that diets low in carbohydrates are safe and can greatly enhance the management of both forms of diabetes as well as the general health of those who have the disease. When used in conjunction with effective therapy, this diet can result in weight loss, decreased prescription dosages, and in certain cases, remission from type 2 diabetes. Globally, there has been a notable surge in the prevalence of diabetes cases as a result of factors such as population growth, aging, urbanization, rising obesity rates, and declining physical activity. Diabetes can be controlled in large part by diet, and millets having low-glycemic index (GI) have become more significant as they release glucose into the bloodstream at a very slow rate. Creating a low-glycemic meal mix with locally sourced ingredients is crucial for daily diet plans. Dietary changes, particularly the addition of millet, can help prevent and manage diabetes mellitus. Eating practices have long been acknowledged for their important role in promoting health and wellness through the consumption of nutrient-dense meals. The health benefits of millet, an underappreciated food crop, are numerous and include low GI, high-fiber content, non-acid-forming potential, polyunsaturated fatty acids (PUFAs), and gluten-free status. Apart from staple crops like wheat and rice, millets are also very healthy and useful, and they have an immense amount of opportunity to aid in the global fight against food insecurity, which is a problem that many countries now confront. Millets are high on the list of recommended foods because of their many health advantages and antioxidant characteristics. Diets that are low in carbohydrates, low in GI, Mediterranean, and very low in calories are now popular. Diabetes can be managed with a nutritious diet, regular exercise, cessation of smoking, and maintenance of a healthy body weight. Furthermore, calorie restriction, the use of low-GI meals, and an increase in fiber content are all possible nutritional strategies in the management of diabetes.

10.
Brief Funct Genomics ; 23(3): 193-213, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751352

RESUMO

Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.


Assuntos
Produtos Agrícolas , Sintase do Amido , Amilopectina/metabolismo , Amilopectina/genética , Amilose/metabolismo , Amilose/genética , Produtos Agrícolas/genética , Genótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Amido/genética , Amido/biossíntese , Sintase do Amido/genética , Sintase do Amido/metabolismo
11.
Planta ; 259(5): 118, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592589

RESUMO

Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.


Assuntos
Milhetes , Fatores de Transcrição , Fatores de Transcrição/genética , Melhoramento Vegetal , Produtos Agrícolas/genética , Secas , Grão Comestível
12.
Indian J Community Med ; 49(1): 5-10, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425966

RESUMO

Millets have been the staple food in many parts of the world, but in recent times they have been losing ground because of the increased use of processed foods and grains, such as wheat and rice. India has been the granary of millets due to the largest production and export of Indian millets globally. The very nature of millets being drought-resistant, small seeded grass, which can be grown in arid conditions, with less water and less farming intensive, makes it a great choice for ecological agriculture and sustainable source of food for combating hunger in the rapidly changing global climate and constructing climate-resistant agri-food systems. The various health benefits of millets make them an excellent choice for patients with celiac disease, type 2 diabetes mellitus, ischemic heart disease, dyslipidemia, obesity, etc.

13.
Nutrients ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542730

RESUMO

A community-level nutritional intervention was implemented among tribal children (3 to 6 years of age) in Telangana, India. The one-year intervention involved six nutrient-rich formulations of millet-pulse-groundnut-based products suited to local taste preferences. Anthropometric measurements of height, weight, and mid-upper-arm circumference (MUAC) along with haemoglobin (Hb) levels were monitored at baseline and endline. The treatment group showed considerable gains in height (3.2 cm), weight (1.68 kg), and MUAC (0.33 cm) over the control group. The paired t-test indicated significant differences (p < 0.01) between the pre- and post-intervention anthropometric measurements. Positive shifts were observed in terms of wasting (WHZ; -1.2 ± 1.3 to -0.9 ± 1), stunting (HAZ; -1.8 ± 1.6 to -0.3 ± 1.3), and underweight (WAZ; -1.9 ± 1.2 to -0.7 ± 1) in the treatment group. The Hb levels in the treatment group also improved significantly from 9.70 ± 0.14 g/dL (moderately anaemic) to 11.08 ± 0.13 g/dL (non-anaemic). Post-intervention focus group discussions (FGDs) involving mothers and teachers confirmed these positive impacts. Thus, a nutritional intervention formulated using climate-resilient millets, pulses, and groundnuts promotes dietary diversity and improves the nutrition and health statuses of children.


Assuntos
Milhetes , Estado Nutricional , Criança , Feminino , Humanos , Pré-Escolar , Lactente , Dieta , Mães , Índia
14.
Front Nutr ; 11: 1305394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419846

RESUMO

Millets are recognized for their health and nutritional values, and the United Nations declared 2023 the International Year of Millets. Among the several health and nutritional benefits of millets, their impact on hemoglobin concentration is important since anemia is a major public health issue in many countries. To investigate the effect of millet (including sorghum) consumption on hemoglobin concentration in the blood, a systematic review and meta-analysis were conducted. Thirteen published studies featuring randomized control trials involving 590 individuals in the intervention group and 549 control individuals were eligible for the meta-analysis. The difference-in-differences analysis revealed highly significant (p < 0.01) positive effects of millet consumption on hemoglobin concentration, with an effect size of +0.68 standardized mean difference units. The change in hemoglobin concentration observed in the intervention group was +13.6%, which is statistically significant (p < 0.0005), compared to that in the control group, which was +4.8% and not statistically significant (p = 0.1362). In four studies, the consumption of millets in the intervention group demonstrated a change from mild anemia to normal status among children, whereas there was no change in the control group. The findings provide evidence that the consumption of millets can improve blood hemoglobin concentration, likely resulting from increased iron intake. Further research is needed involving the assessment of iron content and bioavailability to better understand the effect variation among millet types and the mechanisms involved.

15.
Heliyon ; 10(3): e25330, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333841

RESUMO

In the past decade, the demand and interest of consumers have expanded for using plant-based novel starch sources in different food and non-food processing. Therefore, millet-based value-added functional foods are acquired spare attention due to their excellent nutritional, medicinal, and therapeutic properties. Millet is mainly composed of starch (amylose and amylopectin), which is primary component of the millet grain and defines the quality of millet-based food products. Millet contains approximately 70 % starch of the total grain, which can be used as a, ingredient, thickening agent, binding agent, and stabilizer commercially due to its functional attributes. The physical, chemical, and enzymatic methods are used to extract starch from millet and other cereals. Numerous ways, such as non-thermal physical processes, including ultrasonication, HPP (High pressure processing) high-pressure, PEF (Pulsed electric field), and irradiation are used for modification of millet starch and improve functional properties compared to native starch. In the present review, different databases such as Scopus, Google Scholar, Research Gate, Science Direct, Web of Science, and PubMed were used to collect research articles, review articles, book chapters, reports, etc., for detailed study about millet starch, their extraction (wet milling process) and modification methods such as physical, chemical, biological. The impact of different modification approaches on the techno-functional properties of millet starch and their applications in different sectors have also been reviewed. The data and information created and aggregated in this study will give users the necessary knowledge to further utilize millet starch for value addition and new product development.

16.
J Ayurveda Integr Med ; 15(1): 100901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422821

RESUMO

Millets, the nutria-cereals, are one of the oldest utilized grain. Millets are reported to possess nutraceuticals health benefits which include improvement in functioning of digestive system, reduction in cholesterol, prevention of heart disease, protection against diabetes, lowering risks of cancer etc. With the widespread commemoration of the International Year of Millets in 2023, the Indian government is moving towards the global recognition of millets in light of its medicinal value in correction of lifestyles diseases. One of the common non-communicable diseases is cancer. Chemotherapy is used as adjuvant, neo-adjuvant or as a combination, in metastatic settings. It is linked to outcomes, but it also has unfavorable side effects that lower a patient's quality of life. The reported chemotherapy side effects includes loss of appetite, nausea, vomiting, weakness, hair loss, osteoporosis, immunological suppression and gastric disturbances such as dry mouth, altered taste, ulcers, constipation etc. The effectiveness of tumor therapy and the extension of treatment are both influenced by side effect management. One way to help cancer patients with their polypharmacy load is through dietary management. Rich in phytochemicals, fiber, vitamins, and minerals, millets can be suggested as a dietary therapeutic intervention in addition to chemotherapy. Being widely accessible, cost effective, nutrient-dense, high in fiber, gluten-free, anti-inflammatory, antioxidant, lipid lowering, gastro-protective, immunomodulator in action, millets can serve as a good diet choice to minimize side effects of chemotherapy.

17.
Braz J Microbiol ; 55(1): 647-661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38006513

RESUMO

Probiotics play a critical role in supporting a healthy gut microbiome, which significantly impacts overall health and well-being. While there has been an increase in the availability of probiotic foods in recent years, there may still be limited options and accessibility in certain regions. This study focused on formulating a traditional Indian sweet called laddu enriched with millet and Lactobacillus acidophilus. The formulation of laddu ingredients was optimized using Design Expert software to create an optimal product for testing. The probiotic Lactobacillus acidophilus culture was incorporated into the laddu in three forms: lyophilized, microencapsulated powder, and natural curd. The probiotic foxtail laddu was selected based on specific criteria such as color, odor, and texture. The nutritional analysis revealed that the laddu contained approximately 64.46 g of carbohydrates, 15.13 g of protein, and 5.06 g of fat per 100 g of laddu. A microbial count analysis was performed over a two-month storage period to assess the viability of the incorporated Lactobacillus acidophilus. The results showed that the lyophilized and microencapsulated culture demonstrated good viability, with counts of 6.10 ± 0.09 log CFU/g and 7.43 ± 0.02 log CFU/g, respectively, when stored at 4 °C. In comparison, storage at room temperature resulted in counts of 5.41 ± 0.08 log CFU/g and 6.97 ± 0.02 log CFU/g at the end of the storage period. Based on the findings, the probiotic millet laddu developed in this study has the potential to be a value-added food product that can enhance the overall health of consumers. Incorporating probiotics into traditional food items like laddu offers a convenient and enjoyable way to promote gut health and improve the product's nutritional value.


Assuntos
Probióticos , Setaria (Planta) , Antioxidantes , Lactobacillus , Lactobacillus acidophilus
18.
Heliyon ; 9(11): e22123, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058626

RESUMO

Millets are small-grained nutritious minor cereal crops that are resistant to different abiotic stresses resulting from climate change. Despite their many benefits, millets have received limited attention in agricultural research, policies, and markets. Considering the importance of millets, recently the government many tropical countries including India and Bangladesh give more emphasis to millets cultivation and improvement. Moreover, Food and Agricultural Organization of the United Nations (FAO) declared 2023 to be the "International Years of Millets". In these connections, a details and updated review of the pros and cons of millets cultivation and its improvement in this region warrant due attention. The review therefore, examines the potential and main barriers to the adoption and promotion of millet cultivation in this region. These include limited research and development efforts, inadequate infrastructure and inputs, weak market linkages and demand, and insufficient awareness and knowledge about millets' nutritional and environmental benefits. This review also highlighted the prospects and strategies for scaling up millet cultivation in this region especially in Bangladesh. These include increasing public and private investment in research and extension services, strengthening farmers' organizations and market linkages, promoting millet-based value chains and products, and integrating millets into nation's food policy. The review concludes that millets might support equitable and sustainable agricultural growth, which would contribute to global food and nutritional security and could help attain the sustainable development goals (SDGs). However, achieving this potential will require concerted efforts from multiple stakeholders, including farmers, researchers and policymakers. The review emphasizes the need for a multi-disciplinary and multi-stakeholder approach that prioritizes innovation, inclusiveness, and sustainability. Lastly, the review highlights more investigation into the socioeconomic, environmental, and nutritional effects of millet production in this region with special emphasis on Bangladesh in order to support evidence-based policies and practices.

19.
Cureus ; 15(10): e47769, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021676

RESUMO

Millets are important food crops widely grown by smallholder farmers in the arid and semi-arid regions of the world. Millets are rich in protein, dietary fiber, micronutrients, and have a low glycemic index (GI) and desirable bioactive compounds. Due to their higher nutritional content, millets are popularly known as "nutricereals". Coinciding with the United Nations and the Food and Agriculture Organization's declaration of 2023 as the "International Year of Millets," this review underscores the nutritional value of these grains from the Poaceae family. The consumption of nutricereals is associated with several health benefits including lowering of blood sugar levels (diabetes), controlling blood pressure, and providing protection against thyroid, cardiovascular, and cancer diseases. A review of the literature from PubMed and Google Scholar was done focusing on the health benefits and anti-cancer properties of different millets. Millets have a rich content of macronutrients like carbohydrates and proteins, as well as micronutrients and bioactive compounds, including dietary fibers, essential fatty acids, and phytochemicals. This article explores millets' nutritional elements, i.e., macronutrients, micronutrients, and bioactive compounds, and provides insights into the types of carbohydrates present, the prebiotic function of dietary fibers, and millets' low GI. The study identified the mechanisms by which millets may deter cancer growth, focusing on the roles of dietary fibers, plant protease inhibitors, and bioactive peptides. Additionally, it compared the mineral and vitamin content of millets to other common grains, such as rice and wheat, and explored the potential health advantages of millets over other cereal crops. This review systematically investigated the health advantages of millets, particularly, their anti-cancer capabilities. Dietary fibers, plant protease inhibitors, and bioactive peptides present in millets have the capacity to induce apoptosis, inhibit cell proliferation, and interact with gut microbiota leading to potential anti-cancer effects. This review also identified existing challenges in the bioavailability and effective delivery of millets' bioactive peptides, advocating for further research to maximize their health benefits.

20.
Food Sci Nutr ; 11(11): 6802-6819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970380

RESUMO

High nutrient variability and food security are the needs of the hour. Millets may be as effective as other cereal crops for dealing with severe malnutrition and increasing global population problems. Due to their physiologically active components, millets have attracted more research interest. Finger millet (FM), one of the climate-resilient and minor cereal crop species, is well known for several health benefits, primarily attributed to its nutritional value and polyphenolic content. FM seed coat phenolics exhibit excellent anti-diabetic, anti-oxidant, antimicrobial, anti-osteoporosis, wound healing, anti-lithiatic, inhibiting collagen glycation, cross-linking, and enzyme properties, which may serve well for the pharmacological purposes. Furthermore, the processing of FM is an important factor in its commercial use. It is necessary to invent some novel technologies to increase the productivity of FM by lowering the cost of processing and its effective utilization in the pharmaceutical and food industries. The literature presented will further explore the potential prospects of processing as well as value-added utilization and its nutritional and pharmacological aspects in view of initiating further research in the food industry to formulate ready-to-eat and ready-to-cook products, thereby acting as future crops for sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA