Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Biomolecules ; 14(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39334871

RESUMO

The classification of missense variant pathogenicity continues to pose significant challenges in human genetics, necessitating precise predictions of functional impacts for effective disease diagnosis and personalized treatment strategies. Traditional methods, often compromised by suboptimal feature selection and limited generalizability, are outpaced by the enhanced classification model, MissenseNet (Missense Classification Network). This model, advancing beyond standard predictive features, incorporates structural insights from AlphaFold2 protein predictions, thus optimizing structural data utilization. MissenseNet, built on the ShuffleNet architecture, incorporates an encoder-decoder framework and a Squeeze-and-Excitation (SE) module designed to adaptively adjust channel weights and enhance feature fusion and interaction. The model's efficacy in classifying pathogenicity has been validated through superior accuracy compared to conventional methods and by achieving the highest areas under the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves (Area Under the Curve and Area Under the Precision-Recall Curve) in an independent test set, thus underscoring its superiority.


Assuntos
Aprendizado Profundo , Mutação de Sentido Incorreto , Humanos , Curva ROC , Biologia Computacional/métodos , Proteínas/genética , Proteínas/química
2.
J Genet Genomics ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260683

RESUMO

Sheep (Ovis aries), among the first domesticated species, are now globally widespread and exhibit remarkable adaptability to diverse environments. In this study, we perform whole-genome sequencing of 266 animals from 18 distinct Chinese sheep populations, each displaying unique phenotypes indicative of adaptation to varying environmental conditions. Integrating 131 environmental factors with single nucleotide polymorphism variations, we conduct a comprehensive genetic-environmental association analysis. This analysis identifies 35 key genes likely integral to the environmental adaptation of sheep. The functions of these genes include fat tail formation (HOXA10, HOXA11, JAZF1), wool characteristics (FER, FGF5, MITF, PDE4B), horn phenotypes (RXFP2), reproduction (HIBADH, TRIM71, C6H4orf22) and growth traits (ADGRL3, TRHDE). Notably, we observe a significant correlation between the frequency of missense mutations in the PAPSS2 and RXFP2 genes and variations in altitude. Our study reveals candidate genes for adaptive variation in sheep and demonstrates the diversity in the ways sheep adapt to their environment.

3.
Heliyon ; 10(15): e35058, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157388

RESUMO

Background: Congenital adrenal hyperplasia (CAH) is a heterogeneous group of adrenal steroidogenesis disorders with variable degrees of glucocorticoid, mineralocorticoid and sex steroid deficiencies. CYP11A1 gene encodes the mitochondrial cholesterol side-chain cleavage enzyme (P450scc), which initiates the first reaction in steroidogenesis by converting cholesterol to pregnenolone. Variants in this gene are extremely rare but associated with severe forms of CAH due to its early and critical function in various steroid biosynthesis pathways. Here, we report a CYP11A1 exonic homozygous variant that, although exonic in location, affects splicing by creating an additional aberrant splicing site with frameshift and truncation of the gene. Patients and methods: The proband is a 23-year old 46,XY patient raised as a girl. She was a product of normal pregnancy for first-degree relative parents. Soon after birth, she had vomiting, dehydration, hypotension, hyponatremia and hyperkalemia. She was started on glucocorticoids and mineralocorticoids with prompt recovery. Apart from a chronic need for these medications, her neonatal and childhood history was unremarkable. She sought medical advice at age 19 years for delayed puberty with primary amenorrhea and lack of breast development. On evaluation, she had normal external female genitalia, no breast development, undescended testes and absent uterus and ovaries. Her hormonal evaluation revealed very low estrogen, testosterone, cortisol, aldosterone, 17-hydroxyprogesterone, and androstenedione levels. ACTH, LH, FSH and renin were very high consistent with primary gonadal and adrenal failure. Her parents are healthy first-degree cousins. She has three sisters, all with 46,XX karyotype. One of them is clinically and biochemically normal while the other two sisters have normal female phenotype, normal uterus and ovaries, similar hormonal profile to the proband but different karyotype (46,XX) and absence of undescended testes. gDNA was used for whole exome sequencing (WES). Sanger sequencing was performed to confirm the detected variant and its segregation with the disease. Results: WES identified a homozygous missense variant in CYP11A1 changing the second nucleotide (GCG > GTG) at position 189 in exon 3 and resulting in a change of Alanine to Valine (p.Ala189Val). This variant was confirmed by PCR and Sanger sequencing. It was found in a homozygous form in the proband and her two affected sisters and in a heterozygous form in the unaffected sister. In-silico analysis predicted this variant to create a new splicing site with frameshift and truncation of the gene transcript. This was confirmed by isolation of RNA, cDNA synthesis, gel electrophoresis and sequencing. Conclusion: We describe a family with a very rare form of CAH due to a CYP11A1 variant leading to creation of a new splice site, frameshift and premature truncation of the protein.

4.
Front Genet ; 15: 1402531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104744

RESUMO

Kabuki Syndrome (KS) encompasses a spectrum of clinical manifestations, primarily attributed to pathogenic variants in the KMT2D gene. This study aims to elucidate novel features in KS patients with missense variants, contrasting their presentation with both literature-reported cases of patients with missense pathogenic variants as well as other KS patients with truncating pathogenic variants. Employing a survey questionnaire and clinical evaluations, we examined ten KS patients with missense variants, focusing on their dysmorphism characteristics, behavior and psychomotor development. We identified unique features in missense variant patients, including foot hyperesthesia, musicality, and sensory integration disorders. Notably, despite similarities in developmental trajectories, distinct phenotypic traits emerged in missense variant cases, suggesting a potential genotype-phenotype correlation. These findings contribute to a deeper understanding of KS heterogeneity and underscore the importance of genotype-specific characterization for prognostic and therapeutic considerations. Further exploration of genotype-phenotype relationships promises to refine clinical management strategies and enhance patient outcomes in this complex syndrome.

5.
Br J Pharmacol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096023

RESUMO

BACKGROUND AND PURPOSE: The ATP-dependent biliary efflux transporter ABCC2, also known as multidrug resistance protein 2 (MRP2), is essential for the cellular disposition and detoxification of various xenobiotics including drugs as well as endogenous metabolites. Common functionally relevant ABCC2 genetic variants significantly alter drug responses and contribute to side effects. The aim of this study was to determine functional consequences of rare variants identified in subjects with European ancestry using in silico tools and in vitro analyses. EXPERIMENTAL APPROACH: Targeted next-generation sequencing of the ABCC2 gene was used to identify novel variants in European subjects (n = 143). Twenty-six in silico tools were used to predict functional consequences. For biological validation, transport assays were carried out with membrane vesicles prepared from cell lines overexpressing the newly identified ABCC2 variants and estradiol ß-glucuronide and carboxydichlorofluorescein as the substrates. KEY RESULTS: Three novel rare ABCC2 missense variants were identified (W227R, K402T, V489F). Twenty-five in silico tools predicted W227R as damaging and one as potentially damaging. Prediction of functional consequences was not possible for K402T and V489F and for the common linked variants V1188E/C1515Y. Characterisation in vitro showed increased function of W227R, V489F and V1188E/C1515Y for both substrates, whereas K402T function was only increased for carboxydichlorofluorescein. CONCLUSION AND IMPLICATIONS: In silico tools were unable to accurately predict the substrate-dependent increase in function of ABCC2 missense variants. In vitro biological studies are required to accurately determine functional activity to avoid misleading consequences for drug therapy.

6.
Front Neurosci ; 18: 1437668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145292

RESUMO

Hereditary spastic paraplegia (HSP) is a heterogeneous group of neurological disorders that are characterized by progressive spasticity and weakness in the lower limbs. SPG26 is a complicated form of HSP, which includes not only weakness in the lower limbs, but also cognitive impairment, developmental delay, cerebellar ataxia, dysarthria, and peripheral neuropathy, and is caused by biallelic mutations in the B4GALNT1 (beta-1,4-N-acetylgalactosaminyltransferase 1) gene. The B4GALNT1 gene encodes ganglioside GM2/GD2 synthase (GM2S), which catalyzes the transfer of N-acetylgalactosamine to lactosylceramide, GM3, and GD3 to generate GA2, GM2, and GD2, respectively. The present study attempted to characterize a novel B4GALNT1 variant (NM_001478.5:c.937G>A p.Asp313Asn) detected in a patient with progressive multi-system neurodegeneration as well as deleterious variants found in the general population in Japan. Peripheral blood T cells from our patient lacked the ability for activation-induced ganglioside expression assessed by cell surface cholera toxin binding. Structural predictions suggested that the amino acid substitution, p.Asp313Asn, impaired binding to the donor substrate UDP-GalNAc. An in vitro enzyme assay demonstrated that the variant protein did not exhibit GM2S activity, leading to the diagnosis of HSP26. This is the first case diagnosed with SPG26 in Japan. We then extracted 10 novel missense variants of B4GALNT1 from the whole-genome reference panel jMorp (8.3KJPN) of the Tohoku medical megabank organization, which were predicted to be deleterious by Polyphen-2 and SIFT programs. We performed a functional evaluation of these variants and demonstrated that many showed perturbed subcellular localization. Five of these variants exhibited no or significantly decreased GM2S activity with less than 10% activity of the wild-type protein, indicating that they are carrier variants for HSP26. These results provide the basis for molecular analyses of B4GALNT1 variants present in the Japanese population and will help improve the molecular diagnosis of patients suspected of having HSP.

7.
Intern Med ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39111889

RESUMO

Danon disease (DD) is a rare lysosomal storage disorder resulting from pathogenic variants of the lysosome-associated membrane protein type 2 (LAMP-2) gene. The disease is characterized by severe cardiomyopathy, which rapidly progresses to end-stage heart failure. This case, with DD caused by a missense variant, exhibited slow progressive cardiomyopathy and survived for an extended period despite being a male. A pathological analysis revealed that only a minority of the samples exhibited autophagic vacuoles with unique sarcolemmal features (AVSFs), which are typical of DD. Importantly, LAMP-2 expression was absent and the myocardial tissue contained a substantial amount of p62-positive aggregates.

8.
Genome Med ; 16(1): 88, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992748

RESUMO

BACKGROUND: One of the major hurdles in clinical genetics is interpreting the clinical consequences associated with germline missense variants in humans. Recent significant advances have leveraged natural variation observed in large-scale human populations to uncover genes or genomic regions that show a depletion of natural variation, indicative of selection pressure. We refer to this as "genetic constraint". Although existing genetic constraint metrics have been demonstrated to be successful in prioritising genes or genomic regions associated with diseases, their spatial resolution is limited in distinguishing pathogenic variants from benign variants within genes. METHODS: We aim to identify missense variants that are significantly depleted in the general human population. Given the size of currently available human populations with exome or genome sequencing data, it is not possible to directly detect depletion of individual missense variants, since the average expected number of observations of a variant at most positions is less than one. We instead focus on protein domains, grouping homologous variants with similar functional impacts to examine the depletion of natural variations within these comparable sets. To accomplish this, we develop the Homologous Missense Constraint (HMC) score. We utilise the Genome Aggregation Database (gnomAD) 125 K exome sequencing data and evaluate genetic constraint at quasi amino-acid resolution by combining signals across protein homologues. RESULTS: We identify one million possible missense variants under strong negative selection within protein domains. Though our approach annotates only protein domains, it nonetheless allows us to assess 22% of the exome confidently. It precisely distinguishes pathogenic variants from benign variants for both early-onset and adult-onset disorders. It outperforms existing constraint metrics and pathogenicity meta-predictors in prioritising de novo mutations from probands with developmental disorders (DD). It is also methodologically independent of these, adding power to predict variant pathogenicity when used in combination. We demonstrate utility for gene discovery by identifying seven genes newly significantly associated with DD that could act through an altered-function mechanism. CONCLUSIONS: Grouping variants of comparable functional impacts is effective in evaluating their genetic constraint. HMC is a novel and accurate predictor of missense consequence for improved variant interpretation.


Assuntos
Mutação de Sentido Incorreto , Humanos , Domínios Proteicos , Predisposição Genética para Doença
10.
Heliyon ; 10(12): e32786, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022049

RESUMO

Background: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease, and it has obvious genetic and clinical heterogeneity. Recently, heterozygous ALPK3 truncating variants (ALPK3tv) have been shown to cause HCM. However, the spectrum of ALPK3 variants and their relationships with the clinical characteristics of Chinese patients with HCM remain to be elucidated. Methods and results: Whole-exome sequencing data from 986 patients with HCM and 761 controls without HCM were utilized to analyze ALPK3 variants. Eleven ALPK3tv were detected in 18 patients with HCM (1.8 %), while no such variants were identified in controls. We also detected 21 rare ALPK3 missense variants in 16 patients with HCM (1.6 %) and 8 controls (1.1 %), respectively. ALPK3tv were significantly enriched in patients with HCM (P < 0.001), whereas the prevalence of missense variants was comparable between the HCM and control groups (P = 0.309). Patients with ALPK3tv exhibited a significantly lower left ventricular outflow tract gradient (P = 0.011) and a higher prevalence of apical HCM (27.8 %; P = 0.008). Conclusions: Our study supports that heterozygous ALPK3tv, but not APLK3 missense variants, are a genetic cause of HCM. Patients with HCM carrying ALPK3tv have a greater likelihood of developing apical HCM.

11.
Ophthalmic Genet ; : 1-7, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016008

RESUMO

PURPOSE: The biallelic variant of MAB21L1 has previously been documented in conjunction with the autosomal recessive cerebellar, ocular, craniofacial, and genital syndrome (COFG). The purpose of this study was to investigate the gene-disease association of MAB21L1 and the newly discovered autosomal dominant (AD) microphthalmia. METHODS: We report the presence of an exceptionally rare missense variant in a single allele of the Arg51 codon of MAB21L1 among four individuals from a single family diagnosed with microphthalmia, which suggesting an autosomal dominant inheritance pattern. Subsequently, based on comprehensive literature review, we identified another 13 families that have reported cases of autosomal dominant microphthalmos. RESULTS: Genotype-phenotype analysis revealed that patients with a single allele missense variant in MAB21L1 exhibited solely eye abnormalities. This starkly diverged from the clinical presentation of COFG, typified by the concurrent occurrence of ocular and extraocular symptoms stemming from the biallelic variant in MAB21L1. Our findings revealed that the heterozygous pathogenic variant in MAB21L1 resulted in the emergence of autosomal dominant microphthalmia. By combining these genetic and experimental evidence, the clinical validity of MAB21L1 and the emerging autosomal dominant microphthalmia can be regarded as moderate. CONCLUSION: In summary, there is sufficient convincing evidence to prove that MAB21L1 is a novel pathogenic gene responsible for autosomal dominant microphthalmia, thus offering valuable insights for precise diagnosis and targeted therapeutic interventions in cases of microphthalmia.

12.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39038933

RESUMO

Breast cancer (BC) is the most common malignancy affecting Western women today. It is estimated that as many as 10% of BC cases can be attributed to germline variants. However, the genetic basis of the majority of familial BC cases has yet to be identified. Discovering predisposing genes contributing to familial BC is challenging due to their presumed rarity, low penetrance, and complex biological mechanisms. Here, we focused on an analysis of rare missense variants in a cohort of 12 families of Middle Eastern origins characterized by a high incidence of BC cases. We devised a novel, high-throughput, variant analysis pipeline adapted for family studies, which aims to analyze variants at the protein level by employing state-of-the-art machine learning models and three-dimensional protein structural analysis. Using our pipeline, we analyzed 1218 rare missense variants that are shared between affected family members and classified 80 genes as candidate pathogenic. Among these genes, we found significant functional enrichment in peroxisomal and mitochondrial biological pathways which segregated across seven families in the study and covered diverse ethnic groups. We present multiple evidence that peroxisomal and mitochondrial pathways play an important, yet underappreciated, role in both germline BC predisposition and BC survival.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Predisposição Genética para Doença , Humanos , Neoplasias da Mama/genética , Feminino , Mutação de Sentido Incorreto , Linhagem , Mutação em Linhagem Germinativa
13.
Int J Ophthalmol ; 17(6): 1007-1017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895685

RESUMO

AIM: To identify genetic defects in a Chinese family with congenital posterior polar cataracts and assess the pathogenicity. METHODS: A four-generation Chinese family affected with autosomal dominant congenital cataract was recruited. Nineteen individuals took part in this study including 5 affected and 14 unaffected individuals. Sanger sequencing targeted hot-spot regions of 27 congenital cataract-causing genes for variant discovery. The pathogenicity of the variant was evaluated by the guidelines of American College of Medical Genetics and InterVar software. Confocal microscopy was applied to detect the subcellular localization of fluorescence-labeled ephrin type-A receptor 2 (EPHA2). Co-immunoprecipitation assay was implemented to estimate the interaction between EphA2 and other lens membrane proteins. The mRNA and protein expression were analyzed by reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting assay, respectively. The cell migration was analyzed by wound healing assay. Zebrafish model was generated by ectopic expression of human EPHA2/p.R957P mutant to demonstrate whether the mutant could cause lens opacity in vivo. RESULTS: A novel missense and pathogenic variant c.2870G>C was identified in the sterile alpha motif (SAM) domain of EPHA2. Functional studies demonstrated the variant's impact: reduced EPHA2 protein expression, altered subcellular localization, and disrupted interactions with other lens membrane proteins. This mutant notably enhanced human lens epithelial cell migration, and induced a central cloudy region and roughness in zebrafish lenses with ectopic expression of human EPHA2/p.R957P mutant under differential interference contrast (DIC) optics. CONCLUSION: Novel pathogenic c.2870G>C variant of EPHA2 in a Chinese congenital cataract family contributes to disease pathogenesis.

14.
Am J Med Genet A ; : e63790, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922739

RESUMO

A 7-month-old boy presented to our clinic with developmental delay, Magnetic Resonance Imaging (MRI) features of delayed myelination and diffusion restriction, and a homozygous variant of uncertain significance (c.4T>G, p.Phe2Val) in HIKESHI, a gene associated with autosomal-recessive hypomyelinating leukodystrophy 13. We hypothesized that the variant is disease-causing and aimed to rescue the cellular phenotype with vector-mediated gene replacement. HIKESHI mediates heat-induced nuclear accumulation of heat-shock proteins, including HSP70, to protect cells from stress. We generated skin fibroblasts from the proband and proband's mother (heterozygous) to compare protein expression and subcellular localization of HSP70 under heat stress conditions, and the effect of vector-mediated overexpression of HIKESHI in the proband's cells under the same heat stress conditions. Western blot analysis revealed absent HIKESHI protein from proband fibroblasts, contrasted with ample expression in parental cells. Under heat stress conditions, while the mother's cells displayed appropriate nuclear localization of HSP70, the proband's cells displayed impaired nuclear translocalization. When patient fibroblasts were provided exogenous HIKESHI, the transfected proband's cells showed restored heat-induced nuclear translocalization of HSP70 under conditions of heat stress. These functional data establish that the patient's variant is a pathogenic loss-of-function mutation, thus confirming a diagnosis of hypomyelinating leukodystrophy 13 and that vector-mediated gene replacement may be an effective treatment approach for patients with this disorder.

15.
Anim Genet ; 55(4): 612-620, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866396

RESUMO

Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders that occur in humans, dogs, and several other species. NCL is characterised clinically by progressive deterioration of cognitive and motor function, epileptic seizures, and visual impairment. Most forms present early in life and eventually lead to premature death. Typical pathological changes include neuronal accumulation of autofluorescent, periodic acid-Schiff- and Sudan black B-positive lipopigments, as well as marked loss of neurons in the central nervous system. Here, we describe a 19-month-old Schapendoes dog, where clinical signs were indicative of lysosomal storage disease, which was corroborated by pathological findings consistent with NCL. Whole genome sequencing of the affected dog and both parents, followed by variant calling and visual inspection of known NCL genes, identified a missense variant in CLN6 (c.386T>C). The variant is located in a highly conserved region of the gene and predicted to be harmful, which supports a causal relationship. The identification of this novel CLN6 variant enables pre-breeding DNA-testing to prevent future cases of NCL6 in the Schapendoes breed, and presents a potential natural model for NCL6 in humans.


Assuntos
Doenças do Cão , Mutação de Sentido Incorreto , Lipofuscinoses Ceroides Neuronais , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/veterinária , Animais , Cães/genética , Doenças do Cão/genética , Proteínas de Membrana/genética , Masculino , Feminino
16.
Mol Biol Rep ; 51(1): 753, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874636

RESUMO

BACKGROUND: The diagnosis of neonatal diabetes can be problematic in preterm infants with fetal growth restriction (FGR). Growth restricted fetuses may have impaired insulin production and secretion; low birthweight infants may have a reduced response to insulin. We report a novel missense ABCC8 variant associated with a clinical phenotype compatible with transient neonatal diabetes mellitus (TNDM) in a fetal growth restricted preterm infant. METHODS AND RESULTS: A preterm growth restricted infant experienced hyperglycemia from the first day of life, requiring insulin therapy on the 13th and 15th day of life and leading to the diagnosis of TNDM. Glycemic values normalized from the 35th day of life onwards. Genetic screening was performed by next generation sequencing, using a Clinical Exon panel of 4800 genes, filtered for those associated with the clinical presentation and by means of methylation-specific multiplex ligation-dependent probe amplification analysis to identify chromosomal aberrations at 6q24. Genetic tests excluded defects at 6q24 and were negative for KCNJ11, SLC2A2 (GLUT-2) and HNF1B, but revealed the presence of the heterozygous missense variant c.2959T > C (p.Ser987Pro) in ABCC8 gene. The presence of the variant was excluded in parents' DNA and the proband variant was then considered de novo. CONCLUSIONS: In our infant, the persistence of hyperglycemia beyond 3 weeks of life led us to the diagnosis of TNDM and to hypothesize a possible genetic cause. The genetic variant we found could be, most likely, the main cause of both FGR and TNDM.


Assuntos
Diabetes Mellitus , Retardo do Crescimento Fetal , Mutação de Sentido Incorreto , Receptores de Sulfonilureias , Humanos , Retardo do Crescimento Fetal/genética , Mutação de Sentido Incorreto/genética , Receptores de Sulfonilureias/genética , Recém-Nascido , Diabetes Mellitus/genética , Feminino , Masculino , Recém-Nascido Prematuro , Insulina/metabolismo , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/diagnóstico
17.
Front Pediatr ; 12: 1370790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873579

RESUMO

Background: Congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD) syndrome (OMIM #616266) is an autosomal dominant hereditary disease that can lead to the congenital contracture of the limbs and face, hypotonia, and developmental delay. In addition, it may result in growth retardation and present various clinical symptoms, such as brain atrophy, a small pituitary gland, musculoskeletal abnormalities, abnormal breathing, abdominal hernia, and abnormal facial features. Herein, we describe a novel de novo missense genetic variant in the sodium leak channel, non-selective (NALCN) gene that is associated with CLIFAHDD syndrome. Case description: This study describes a patient with varus deformities in both feet, deviation of the ulnar side of the fingers, and severe hypotonia. This patient was subsequently confirmed to have CLIFAHDD syndrome through genetic testing, which also revealed a novel missense de novo genetic variant in the NALCN gene (c.3553G > A, p.Ala1185Thr). Conclusions: Our findings further enrich the known variant spectrum of the NALCN gene and may expand the range of clinical options for treating NALCN-related disorders.

18.
Cerebellum ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869769

RESUMO

The CACNA1A gene encodes the alpha-1A subunit of P/Q type voltage-gated calcium channel Cav2.1, which is associated with a broad clinical spectrum and variable symptomatology. While few patients with progressive ataxia caused by CACNA1A missense variants have been reported, here we report three unrelated Chinese patients with progressive ataxia due to de novo missense variants in the CACNA1A gene, including a novel pathogenic variant (c.4999C > G) and a previously reported pathogenic variant (c.4037G > A). Our findings and a systematic literature review show the unique phenotype of progressive ataxia caused by missense variants and enlarge the genetic and clinical spectrum of CACNA1A. This suggests that in addition to routine screening for dynamic mutations, screening for CACNA1A variants is important for clinicians facing patients with progressive ataxia.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38910474

RESUMO

BACKGROUND: Variants in the PRRT2 gene are associated with paroxysmal kinesigenic dyskinesia and other episodic disorders. With the employment of variant screening in patients with episodic dyskinesia, many PRRT2 variants have been discovered. Bioinformatics tools are becoming increasingly important for predicting the functional significance of variants. This study aimed to evaluate the performance of six in silico tools for PRRT2 missense variants. METHODS: Pathogenic PRRT2 variants were retrieved from the Human Gene Mutation Database (HGMD) and literature from the PubMed database. The benign set of non-deleterious variants was retrieved from the Genome Aggregation Database (gnomAD). The overall accuracy, sensitivity, specificity, positive predictive values, and negative predictive values of SIFT, PolyPhen2, MutationTaster, CADD, Fathmm, and Provean were analyzed. The MCC score and ROC curve were calculated. The GraphPad Prism 8.0 software was used to plot ROC curves for the six bioinformatics software. RESULTS: A total of 45 missense variants with confirmed pathogenicity were used as a positive set, and 222 missense variants were used as a negative set. The top three tools in accuracy are Fathmm, Provean, and MutationTaster. The top three predictors in sensitivity are SIFT, PolyPhen2, and CADD. Regarding specificity, the top three tools were Provean, Fathmm, and MutationTaster. In terms of the MCC and F-score, the highest degree was observed in Fathmm. Fathmm also had the highest AUC score. The cutoff values of Fathmm, CADD, PolyPhen2, and Provean were between the median prediction scores of the positive and negative sets. In contrast, the cutoff value of SIFT was below the median prediction score of the positive and negative sets. Fathmm had the highest accuracy. CONCLUSION: The prediction performance of six in silico tools differed among the parameters. Fathmm had the best prediction performance, with the highest accuracy and MCC/F-score for PRRT2 missense variants.

20.
Biochem Genet ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802693

RESUMO

Paired homologous domain transcription factor 2 (PITX2) is critically involved in ocular and cardiac development. Mutations in PITX2 are consistently reported in association with Axenfeld-Rieger syndrome, an autosomal dominant genetic disorder and atrial fibrillation, a common cardiac arrhythmia. In this study, we have mined missense mutations in PITX2 gene from NCBI-dbSNP and Ensembl databases, evaluated the pathogenicity of the missense variants in the homeodomain and C-terminal region using five in silico prediction tools SIFT, PolyPhen2, GERP, Mutation Assessor and CADD. Fifteen homeodomain mutations G42V, G42R, R45W, S49Y, R53W, E53D, E55V, R62H, P65S, R69H, G75R, R84G, R86K, R87W, R91P were found to be highly pathogenic by both SIFT, PolyPhen2 were further functionally characterized using I-Mutant 2.0, Consurf, MutPred and Project Hope. The findings of the study can be used for prioritizing mutations in the context of genetic studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA