Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Microbiol Immunol ; 66(12): 539-551, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114681

RESUMO

Members of the oral mitis group streptococci including Streptococcus oralis, Streptococcus sanguinis, and Streptococcus gordonii are the most abundant inhabitants of human oral cavity and dental plaque, and have been implicated in infectious complications such as bacteremia and infective endocarditis. Oral mitis group streptococci are genetically close to Streptococcus pneumoniae; however, they do not produce cytolysin (pneumolysin), which is a key virulence factor of S. pneumoniae. Similar to S. pneumoniae, oral mitis group streptococci possess several cell surface proteins that bind to the cell surface components of host mammalian cells. S. sanguinis expresses long filamentous pili that bind to the matrix proteins of host cells. The cell wall-anchored nuclease of S. sanguinis contributes to the evasion of the neutrophil extracellular trap by digesting its web-like extracellular DNA. Oral mitis group streptococci produce glucosyltransferases, which synthesize glucan (glucose polymer) from sucrose of dietary origin. Neuraminidase (NA) is a virulent factor in oral mitis group streptococci. Influenza type A virus (IAV) relies on viral NA activity to release progeny viruses from infected cells and spread the infection, and NA-producing oral streptococci elevate the risk of IAV infection. Moreover, oral mitis group streptococci produce hydrogen peroxide (H2 O2 ) as a by-product of sugar metabolism. Although the concentrations of streptococcal H2 O2 are low (1-2 mM), they play important roles in bacterial competition in the oral cavity and evasion of phagocytosis by host macrophages and neutrophils. In this review, we intended to describe the diverse pathogenicity of oral mitis group streptococci.


Assuntos
Boca , Humanos
2.
J Oral Microbiol ; 14(1): 2105013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937899

RESUMO

Background: Some strains of Streptococcus mitis exhibit ß-hemolysis due to the ß-hemolytic activity of cholesterol-dependent cytolysin (CDC). Recently, a gene encoding an atypical lectinolysin-related CDC was found in S. mitis strain Nm-76. However, the product of this gene remains uncharacterized. We aimed to characterize this atypical CDC and its molecular functions and contribution to the pathogenicity of S. mitis strain Nm-76. Methods: Phylogenetic analysis of the CDC gene was conducted based on the web-deposited information. The molecular characteristics of CDC were investigated using a gene-deletion mutant strain and recombinant proteins expressed in Escherichia coli. Results: The gene encoding CDC found in Nm-76 and its homolog are distributed among many S. mitis strains. This CDC is phylogenetically different from other previously characterized CDCs, such as S. mitis-derived human platelet aggregation factor (Sm-hPAF)/lectinolysin and mitilysin. Because this CDC possesses an additional N-terminal domain, including a discoidin motif, it was termed discoidinolysin (DLY). In addition to the preferential lysis of human cells, DLY displayed N-terminal domain-dependent facilitation of human erythrocyte aggregation and intercellular associations between human cells. Conclusion: DLY functions as a hemolysin/cytolysin and erythrocyte aggregation/intercellular association molecule. This dual-function DLY could be an additional virulence factor in S. mitis.

3.
Microbiol Immunol ; 66(6): 253-263, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35088451

RESUMO

Secondary bacterial infection following influenza type A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Streptococcus pneumoniae has been identified as a predominant pathogen in secondary pneumonia cases that develop following influenza. Although IAV has been shown to enhance susceptibility to the secondary bacterial infection, the underlying mechanism of the viral-bacterial synergy leading to disease progression is complex and remains elusive. In this review, cooperative interactions of viruses and streptococci during co- or secondary infection with IAV are described. IAV infects the upper respiratory tract, therefore, streptococci that inhabit or infect the respiratory tract are of special interest. As many excellent reviews on the co-infection of IAV and S. pneumoniae have already been published, this review is intended to describe the unique interactions between other streptococci and IAV. Both streptococcal and IAV infections modulate the host epithelial barrier of the respiratory tract in various ways. IAV infection directly disrupts epithelial barriers, though at the same time the virus modifies the properties of infected cells to enhance streptococcal adherence and invasion. Mitis group streptococci produce neuraminidases, which promote IAV infection in a unique manner. The studies reviewed here have revealed intriguing mechanisms underlying secondary streptococcal infection following influenza.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Infecções Estreptocócicas , Coinfecção/complicações , Humanos , Influenza Humana/complicações , Infecções Estreptocócicas/microbiologia , Streptococcus pneumoniae
4.
Microbiol Immunol ; 65(11): 512-529, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34591320

RESUMO

The genus Streptococcus infects a broad range of hosts, including humans. Some species, such as S. pyogenes, S. agalactiae, S. pneumoniae, and S. mutans, are recognized as the major human pathogens, and their pathogenicity toward humans has been investigated. However, many of other streptococcal species have been recognized as opportunistic pathogens in humans, and their clinical importance has been underestimated. In our previous study, the Anginosus group streptococci (AGS) and Mitis group streptococci (MGS) showed clear ß-hemolysis on blood agar, and the factors responsible for the hemolysis were homologs of two types of ß-hemolysins, cholesterol-dependent cytolysin (CDC) and streptolysin S (SLS). In contrast to the regular ß-hemolysins produced by streptococci (typical CDCs and SLSs), genetically, structurally, and functionally atypical ß-hemolysins have been observed in AGS and MGS. These atypical ß-hemolysins are thought to affect and contribute to the pathogenic potential of opportunistic streptococci mainly inhabiting the human oral cavity. In this review, we introduce the diverse characteristics of ß-hemolysin produced by opportunistic streptococci, focusing on the species/strains belonging to AGS and MGS, and discuss their pathogenic potential.


Assuntos
Proteínas Hemolisinas , Infecções Estreptocócicas , Hemólise , Humanos , Streptococcus pneumoniae , Streptococcus pyogenes
5.
J Microbiol ; 59(8): 792-806, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34302622

RESUMO

Viridans group streptococci are a serious health concern because most of these bacteria cause life-threatening infections, especially in immunocompromised and hospitalized individuals. We focused on two alpha-hemolytic Streptococcus strains (I-G2 and I-P16) newly isolated from an ileostomy effluent of a colorectal cancer patient. We examined their pathogenic potential by investigating their prevalence in human and assessing their pathogenicity in a mouse model. We also predicted their virulence factors and pathogenic features by using comparative genomic analysis and in vitro tests. Using polyphasic and systematic approaches, we identified the isolates as belonging to a novel Streptococcus species and designated it as Streptococcus ilei. Metagenomic survey based on taxonomic assignment of datasets from the Human Microbiome Project revealed that S. ilei is present in most human population and at various body sites but is especially abundant in the oral cavity. Intraperitoneal injection of S. ilei was lethal to otherwise healthy C57BL/6J mice. Pathogenomics and in vitro assays revealed that S. ilei possesses a unique set of virulence factors. In agreement with the in vivo and in vitro data, which indicated that S. ilei strain I-G2 is more pathogenic than strain I-P16, only the former displayed the streptococcal group A antigen. We here newly identified S. ilei sp. nov., and described its prevalence in human, virulence factors, and pathogenicity. This will help to prevent S. ilei strain misidentification in the future, and improve the understanding and management of streptococcal infections.


Assuntos
Microbiota , Infecções Estreptocócicas/microbiologia , Streptococcus/isolamento & purificação , Streptococcus/patogenicidade , Adulto , Animais , Microbioma Gastrointestinal , Humanos , Ileostomia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Streptococcus/classificação , Streptococcus/genética , Virulência
6.
Microbiol Immunol ; 65(2): 61-75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33331679

RESUMO

Streptococcus pseudopneumoniae (SPpn) is a relatively new species closely related to S. pneumoniae (SPn) and S. mitis (SM) belonging to the Mitis group of the genus Streptococcus (MGS). Although genes encoding various pneumococcal virulence factors have been observed in the SPpn genome, the pathogenicity of SPpn against human, including the roles of virulence factor candidates, is still unclear. The present study focused on and characterized a candidate virulence factor previously reported in SPpn with deduced multiple functional domains, such as lipase domain, two lectin domains, and cholesterol-dependent cytolysin-related domain using various recombinant proteins. The gene was found not only in SPpn but also in the strains of SM and SPn. Moreover, the gene product was expressed in the gene-positive strains as secreted and cell-bound forms. The recombinant of gene product showed lipase activity and human cell-binding activity depending on the function of lectin domain(s), but no hemolytic activity. Thus, based on the distribution of the gene within the MGS and its molecular function, the gene product was named mitilectin (MLC) and its contribution to the potential pathogenicity of the MLC-producing strains was investigated. Consequently, the treatment with anti-MLC antibody and the mlc gene-knockout significantly reduced the human cell-binding activity of MLC-producing strains. Therefore, the multifunctional MLC was suggested to be important as an adhesion molecule in considering the potential pathogenicity of the MLC-producing strains belonging to MGS, such as SPpn and SM.


Assuntos
Streptococcus mitis , Moléculas de Adesão Celular , Colesterol , Citotoxinas , Humanos , Streptococcus , Streptococcus pneumoniae
7.
Artigo em Inglês | MEDLINE | ID: mdl-32083020

RESUMO

Differentiation between mitis group streptococci (MGS) bacteria in routine laboratory tests has become important for obtaining accurate epidemiological information on the characteristics of MGS and understanding their clinical significance. The most reliable method of MGS species identification is multilocus sequence analysis (MLSA) with seven house-keeping genes; however, because this method is time-consuming, it is deemed unsuitable for use in most clinical laboratories. In this study, we established a scheme for identifying 12 species of MGS (S. pneumoniae, S. pseudopneumoniae, S. mitis, S. oralis, S. peroris, S. infantis, S. australis, S. parasanguinis, S. sinensis, S. sanguinis, S. gordonii, and S. cristatus) using the MinION nanopore sequencer (Oxford Nanopore Technologies, Oxford, UK) with the taxonomic aligner "What's in My Pot?" (WIMP; Oxford Nanopore's cloud-based analysis platform) and Kraken2 pipeline with the custom database adjusted for MGS species identification. The identities of the species in reference genomes (n = 514), clinical isolates (n = 31), and reference strains (n = 4) were confirmed via MLSA. The nanopore simulation reads were generated from reference genomes, and the optimal cut-off values for MGS species identification were determined. For 31 clinical isolates (S. pneumoniae = 8, S. mitis = 17 and S. oralis = 6) and 4 reference strains (S. pneumoniae = 1, S. mitis = 1, S. oralis = 1, and S. pseudopneumoniae = 1), a sequence library was constructed via a Rapid Barcoding Sequencing Kit for multiplex and real-time MinION sequencing. The optimal cut-off values for the identification of MGS species for analysis by WIMP and Kraken2 pipeline were determined. The workflow using Kraken2 pipeline with a custom database identified all 12 species of MGS, and WIMP identified 8 MGS bacteria except S. infantis, S. australis, S. peroris, and S. sinensis. The results obtained by MinION with WIMP and Kraken2 pipeline were consistent with the MGS species identified by MLSA analysis. The practical advantage of whole genome analysis using the MinION nanopore sequencer is that it can aid in MGS surveillance. We concluded that MinION sequencing with the taxonomic aligner enables accurate MGS species identification and could contribute to further epidemiological surveys.


Assuntos
Técnicas de Tipagem Bacteriana , Sequenciamento por Nanoporos , Análise de Sequência de DNA , Streptococcus/classificação , Genes Bacterianos , Genoma Bacteriano , Humanos , Mucosa Bucal/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus mitis/classificação , Streptococcus mitis/genética , Streptococcus mitis/isolamento & purificação , Streptococcus oralis/classificação , Streptococcus oralis/genética , Streptococcus oralis/isolamento & purificação , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Streptococcus sanguis/classificação , Streptococcus sanguis/genética , Streptococcus sanguis/isolamento & purificação , Sequenciamento Completo do Genoma
8.
Open Biol ; 7(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28931649

RESUMO

The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease (n = 101) and from carriage (n = 103), and on non-typeable pneumococci from asymptomatic individuals (n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae, targeting cpsA, lytA, piaB, ply, Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae, whereas assays targeting cpsA, ply, Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Genoma Bacteriano , Infecções Pneumocócicas/diagnóstico , Proteínas Ribossômicas/genética , Streptococcus pneumoniae/genética , Técnicas de Tipagem Bacteriana , Portador Sadio , Expressão Gênica , Humanos , Países Baixos , Filogenia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Análise de Sequência de DNA , Índice de Gravidade de Doença , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação
9.
J Oral Microbiol ; 9(1): 1307079, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473881

RESUMO

Streptococcus tigurinus is a new member of the Mitis group and is associated with infective endocarditis. Low and high virulent variants have been described. A search was made in the national reference collection of endocarditis isolates for S. tigurinus-like strains by sequencing housekeeping genes (16S rRNA-gene, gdh, groEL, sodA). The strains were further profiled by polymerase chain reaction (PCR) targeting a choice of virulence genes (rib-like, cshA-like, gtfR, int, pitA, hylA). To study the prevalence and abundance of S. tigurinus in the saliva and on the mucosal membranes of 35 healthy adults, PCRs detecting two variants of the 16S operon and virulence genes were applied. Among the endocarditis isolates, eight strains (all gtfR-negative and former S. oralis) holding the specific S. tigurinus 16S motif were found, but the pattern of genes related to high virulence found in the S. tigurinus type strain could not be detected in any of these strains. A close phylogenetic proximity between S. tigurinus and S. oralis was observed, with intersectional hybrid strains formed. This was supported by concatenated housekeeping sequences, in silico DNA-DNA hybridization, pathogenomic profiling, and multidimensional scaling. In the oral samples, S. tigurinus could be detected frequently, especially in the most common operon variant, but none of the type strain-related virulence factors were found. Low virulent S. tigurinus-like strains can be found frequently and in high prevalence (66%) and abundance (12.5%) in the oral cavity of healthy adults. In strain collections, they are among the formerly known gtfR-negative S. oralis. Highly virulent strains seem to be uncommon. Though closely related, S. oralis and S. tigurinus can be separated by the presence or absence of gtfR and dextran production. Hybrids of both species can be found. The variable arsenal of virulence genes found in this study emphasizes the genetic plasticity of Mitis group streptococci.

10.
J Clin Microbiol ; 55(3): 914-922, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28053215

RESUMO

Reliable distinction of Streptococcus pneumoniae and viridans group streptococci is important because of the different pathogenic properties of these organisms. Differentiation between S. pneumoniae and closely related Sreptococcusmitis species group streptococci has always been challenging, even when using such modern methods as 16S rRNA gene sequencing or matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. In this study, a novel algorithm combined with an enhanced database was evaluated for differentiation between S. pneumoniae and S. mitis species group streptococci. One hundred one clinical S. mitis species group streptococcal strains and 188 clinical S. pneumoniae strains were identified by both the standard MALDI Biotyper database alone and that combined with a novel algorithm. The database update from 4,613 strains to 5,627 strains drastically improved the differentiation of S. pneumoniae and S. mitis species group streptococci: when the new database version containing 5,627 strains was used, only one of the 101 S. mitis species group isolates was misidentified as S. pneumoniae, whereas 66 of them were misidentified as S. pneumoniae when the earlier 4,613-strain MALDI Biotyper database version was used. The updated MALDI Biotyper database combined with the novel algorithm showed even better performance, producing no misidentifications of the S. mitis species group strains as S. pneumoniae All S. pneumoniae strains were correctly identified as S. pneumoniae with both the standard MALDI Biotyper database and the standard MALDI Biotyper database combined with the novel algorithm. This new algorithm thus enables reliable differentiation between pneumococci and other S. mitis species group streptococci with the MALDI Biotyper.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Streptococcus mitis/classificação , Streptococcus pneumoniae/classificação , Algoritmos , Bases de Dados de Compostos Químicos , Humanos , Infecções Estreptocócicas/microbiologia , Streptococcus mitis/química , Streptococcus mitis/isolamento & purificação , Streptococcus pneumoniae/química , Streptococcus pneumoniae/isolamento & purificação
11.
PeerJ ; 1: e97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825797

RESUMO

We performed culture-based and PCR-based tests for pneumococcal identification and serotyping from carriage specimens collected in rural and urban Kenya. Nasopharyngeal specimens from 237 healthy children <5 years old (C-NPs) and combined nasopharyngeal/oropharyngeal specimens from 158 adults (A-NP/OPs, 118 HIV-positive) were assessed using pneumococcal isolation (following broth culture enrichment) with Quellung-based serotyping, real-time lytA-PCR, and conventional multiplexed PCR-serotyping (cmPCR). Culture-based testing from C-NPs, HIV-positive A-NP/OPs, and HIV-negative A-NP/OPs revealed 85.2%, 40.7%, and 12.5% pneumococcal carriage, respectively. In contrast, cmPCR serotypes were found in 93.2%, 98.3%, and 95.0% of these sets, respectively. Two of 16 lytA-negative C-NPs and 26 of 28 lytA-negative A-NP/OPs were cmPCR-positive for 1-10 serotypes (sts) or serogroups (sgs). A-NP/OPs averaged 5.5 cmPCR serotypes/serogroups (5.2 in HIV-positive, 7.1 in HIV-negative) and C-NPs averaged 1.5 cmPCR serotypes/serogroups. cmPCR serotypes/serogroups from lytA-negative A-NP/OPs included st2, st4, sg7F/7A, sg9N/9L, st10A, sg10F/10C/33C, st13, st17F, sg18C/18A/18B/18F, sg22F/22A, and st39. Nine strains of three non-pneumococcal species (S. oralis, S. mitis, and S. parasanguinis) (7 from A-OP, 1 from both A-NP and A-OP, and 1 from C-NP) were each cmPCR-positive for one of 7 serotypes/serogroups (st5, st13, sg15A/15F, sg10F/10C/33C, sg33F/33A/37, sg18C/18A/18B/18F, sg12F/12A/12B/ 44/46) with amplicons revealing 83.6-99.7% sequence identity to pneumococcal references. In total, 150 cmPCR amplicons from carriage specimens were sequenced, including 25 from lytA-negative specimens. Amplicon sequences derived from specimens yielding a pneumococcal isolate with the corresponding serotype were identical or highly conserved (>98.7%) with the reference cmPCR amplicon for the st, while cmPCR amplicons from lytA-negative specimens were generally more divergent. Separate testing of 56 A-OPs and 56 A-NPs revealed that ∼94% of the positive cmPCR results from A-NP/OPs were from OP microbiota. In contrast, A-NPs yielded >2-fold more pneumococcal isolates than A-OPs. Verified and suspected non-pneumococcal cmPCR serotypes/serogroups appeared to be relatively rare in C-NPs and A-NPs compared to A-OPs. Our findings indicate that non-pneumococcal species can confound serotype-specific PCR and other sequence-based assays due to evolutionarily conserved genes most likely involved in biosynthesis of surface polysaccharide structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA