Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1165868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168227

RESUMO

Introduction: Glyphosate is the active compound of different non-selective herbicides, being the most used agriculture pesticide worldwide. Glyphosate and AMPA (one of its main metabolites) are common pollutants of water, soil, and food sources such as crops. They can be detected in biological samples from both exposed workers and general population. Despite glyphosate acts as inhibitor of the shikimate pathway, present only in plants and some microorganisms, its safety in mammals is still debated. Acute glyphosate intoxications are correlated to cardiovascular/neuronal damages, but little is known about the effects of the chronic exposure. Methods: We evaluated the direct biological effects of different concentrations of pure glyphosate/AMPA on a rat-derived cell line of cardiomyoblasts (H9c2) in acute (1-2 h) or sub-chronic (24-48 h) settings. We analyzed cell viability/morphology, ROS production and mitochondrial dynamics. Results: Acute exposure to high doses (above 10 mM) of glyphosate and AMPA triggers immediate cytotoxic effects: reduction in cell viability, increased ROS production, morphological alterations and mitochondrial function. When exposed to lower glyphosate concentrations (1 µM-1 mM), H9c2 cells showed only a slight variation in cell viability and ROS production, while mitochondrial dynamic was unvaried. Moreover, the phenotype was completely restored after 48 h of treatment. Surprisingly, the sub-chronic (48 h) treatment with low concentrations (1 µM-1 mM) of AMPA led to a late cytotoxic response, reflected in a reduction in H9c2 viability. Conclusion: The comprehension of the extent of human exposure to these molecules remains pivotal to have a better critical view of the available data.

3.
Front Mol Biosci ; 9: 890402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677882

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential molecule for living organisms. CD38 is a key NAD+-dependent enzyme which breaks down NAD+ to cyclic ADP-ribose (ADPR) and nicotinamide (NAM, vitamin B3), and NAM can be recycled to synthesize NAD+. CD38 expression is consistently silenced by methylation in prostate cancer and progressively downregulated in advanced castration-resistant prostate cancer, suggesting a connection between NAD+ and prostate carcinogenesis as well as prostate cancer progression. However, the functional interplay between NAD+, CD38, and NAM remains largely uncharacterized in prostate cancer cells. In this study, we generated stable LNCaP95 cell clones expressing varying levels of CD38 upon induction by doxycycline. We demonstrate that CD38 overexpression resulted in growth suppression and apoptosis accompanied by cleavage of poly (ADP-ribose) polymerase 1 (PARP1). CD38 overexpression also dramatically reduced intracellular NAD+ levels and decreased mitochondrial respiration as measured by oxygen consumption rate. We further show that some but not all of these CD38-induced phenotypes could be rescued by exogenous NAM. Treatment of cells with NAM rescued CD38-induced apoptosis and mitochondrial stress but did not restore intracellular NAD+ levels. We also found that NAM demonstrated biphasic effect on mitochondria function, a finding that can be explained by the dual role of NAM as both a precursor of NAD+ and also as a suppressor of a number of NAD+-dependent enzymes. Collectively, these findings provide additional insight supporting the functional relevance of CD38 loss in prostate cancer by linking cell-autonomous regulation of mitochondrial function and prostate cancer.

4.
Cell Metab ; 32(6): 981-995.e7, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264603

RESUMO

Mitochondria constantly adapt to the metabolic needs of a cell. This mitochondrial plasticity is critical to T cells, which modulate metabolism depending on antigen-driven signals and environment. We show here that de novo synthesis of the mitochondrial membrane-specific lipid cardiolipin maintains CD8+ T cell function. T cells deficient for the cardiolipin-synthesizing enzyme PTPMT1 had reduced cardiolipin and responded poorly to antigen because basal cardiolipin levels were required for activation. However, neither de novo cardiolipin synthesis, nor its Tafazzin-dependent remodeling, was needed for T cell activation. In contrast, PTPMT1-dependent cardiolipin synthesis was vital when mitochondrial fitness was required, most notably during memory T cell differentiation or nutrient stress. We also found CD8+ T cell defects in a small cohort of patients with Barth syndrome, where TAFAZZIN is mutated, and in a Tafazzin-deficient mouse model. Thus, the dynamic regulation of a single mitochondrial lipid is crucial for CD8+ T cell immunity.


Assuntos
Aciltransferases/imunologia , Síndrome de Barth/imunologia , Linfócitos T CD8-Positivos/imunologia , Cardiolipinas/imunologia , Mitocôndrias/imunologia , PTEN Fosfo-Hidrolase/imunologia , Animais , Síndrome de Barth/patologia , Linfócitos T CD8-Positivos/citologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Front Endocrinol (Lausanne) ; 11: 568305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071976

RESUMO

Inflammation is associated with the release of soluble mediators that drive cellular activation and migration of inflammatory leukocytes to the site of injury, together with endothelial expression of adhesion molecules, and increased vascular permeability. It is a stepwise tightly regulated process that has been evolved to cope with a wide range of different inflammatory stimuli. However, under certain physiopathological conditions, the inflammatory response overwhelms local regulatory mechanisms and leads to systemic inflammation that, in turn, might affect metabolism in distant tissues and organs. In this sense, as mitochondria are able to perceive signals of inflammation is one of the first organelles to be affected by a dysregulation in the systemic inflammatory response, it has been associated with the progression of the physiopathological mechanisms. Mitochondria are also an important source of ROS (reactive oxygen species) within most mammalian cells and are therefore highly involved in oxidative stress. ROS production might contribute to mitochondrial damage in a range of pathologies and is also important in a complex redox signaling network from the organelle to the rest of the cell. Therefore, a role for ROS generated by mitochondria in regulating inflammatory signaling was postulated and mitochondria have been implicated in multiple aspects of the inflammatory response. An inflammatory condition that affects mitochondrial function in different organs is the exposure to air particulate matter (PM). Both after acute and chronic pollutants exposure, PM uptake by alveolar macrophages have been described to induce local cell activation and recruitment, cytokine release, and pulmonary inflammation. Afterwards, inflammatory mediators have been shown to be able to reach the bloodstream and induce a systemic response that affects metabolism in distant organs different from the lung. In this proinflammatory environment, impaired mitochondrial function that leads to bioenergetic dysfunction and enhanced production of oxidants have been shown to affect tissue homeostasis and organ function. In the present review, we aim to discuss the latest insights into the cellular and molecular mechanisms that link systemic inflammation and mitochondrial dysfunction in different organs, taking the exposure to air pollutants as a case model.


Assuntos
Poluentes Atmosféricos/metabolismo , Mediadores da Inflamação/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Poluentes Atmosféricos/efeitos adversos , Animais , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Mitocôndrias/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 117(4): 2065-2075, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932444

RESUMO

The adaptation of eukaryotic cells to anaerobic conditions is reflected by substantial changes to mitochondrial metabolism and functional reduction. Hydrogenosomes belong among the most modified mitochondrial derivative and generate molecular hydrogen concomitant with ATP synthesis. The reduction of mitochondria is frequently associated with loss of peroxisomes, which compartmentalize pathways that generate reactive oxygen species (ROS) and thus protect against cellular damage. The biogenesis and function of peroxisomes are tightly coupled with mitochondria. These organelles share fission machinery components, oxidative metabolism pathways, ROS scavenging activities, and some metabolites. The loss of peroxisomes in eukaryotes with reduced mitochondria is thus not unexpected. Surprisingly, we identified peroxisomes in the anaerobic, hydrogenosome-bearing protist Mastigamoeba balamuthi We found a conserved set of peroxin (Pex) proteins that are required for protein import, peroxisomal growth, and division. Key membrane-associated Pexs (MbPex3, MbPex11, and MbPex14) were visualized in numerous vesicles distinct from hydrogenosomes, the endoplasmic reticulum (ER), and Golgi complex. Proteomic analysis of cellular fractions and prediction of peroxisomal targeting signals (PTS1/PTS2) identified 51 putative peroxisomal matrix proteins. Expression of selected proteins in Saccharomyces cerevisiae revealed specific targeting to peroxisomes. The matrix proteins identified included components of acyl-CoA and carbohydrate metabolism and pyrimidine and CoA biosynthesis, whereas no components related to either ß-oxidation or catalase were present. In conclusion, we identified a subclass of peroxisomes, named "anaerobic" peroxisomes that shift the current paradigm and turn attention to the reductive evolution of peroxisomes in anaerobic organisms.


Assuntos
Archamoebae/metabolismo , Peroxissomos/metabolismo , Anaerobiose , Archamoebae/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Peroxinas/genética , Peroxinas/metabolismo , Peroxissomos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Zhonghua Liu Xing Bing Xue Za Zhi ; 38(1): 26-31, 2017 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-28100372

RESUMO

Objective: To investigate the effects of mitochondrial DNA (mtDNA) copy number in peripheral blood and related factors on the risk of hypertension in coal miners. Methods: A case-control study was conducted in 378 coal miners with hypertension and 325 healthy coal miners recruited from Datong Coal Mine Group. A standard questionnaire was used to collect their general information, such as demographic characteristics, habits and occupational history. Fluorescence quantitative PCR was performed to detect the copy number of mtDNA. Logistic regression model was applied for identifying the related risk factors of hypertension and analyzing the interaction between mtDNA copy number and risk factors. Results: The prevalence of hypertension of high mtDNA copy number was lower than mtDNA copy numberin 0-5.67 group, but the difference was not statistically significant (P=0.414). Alcohol drinking (OR=1.80, 95% CI: 1.26-2.56), family history of hypertension (OR=1.74, 95% CI: 1.20- 2.50), work shifts (OR=0.69, 95% CI: 0.48-0.99), education level (P=0.012) and family monthly income level (P=0.001) were related to the prevalence of hypertension. There were potential interactions between mtDNA copy number and alcohol drinking, family monthly income level, family history of hypertension, respectively. Alcohol drinking was a risk factor for hypertension [1.77 (1.25-2.50)]. Potential interactions between mtDNA copy number and alcohol drinking reduced the risk of hypertension (OR=1.20, 95% CI: 1.07-1.35). Family history of hypertension was a risk factor for hypertension [1.81(1.26-2.59)]. Potential interactions between mtDNA copy number and family history of hypertension reduced the risk of hypertension (OR=1.24, 95%CI: 1.09-1.41). Family monthly income level was a protect factor for hypertension [0.55(0.46-0.66)]. Potential interactions between mtDNA copy number and family monthly income level increased the protection role of hypertension (OR=0.90, 95% CI: 0.86-0.94). Conclusion: mtDNA copy number variation was not significantly associated with the prevalence of hypertension in coal miners, but mtDNA copy number showed multiplication interaction on the prevalence of hypertension with alcohol drinking, family monthly income level as well as family history of hypertension and made their influences weaken.


Assuntos
Minas de Carvão , Variações do Número de Cópias de DNA , DNA Mitocondrial , Mineradores , Saúde Ocupacional , Consumo de Bebidas Alcoólicas/epidemiologia , Estudos de Casos e Controles , Humanos , Hipertensão/sangue , Hipertensão/epidemiologia , Hipertensão/genética , Modelos Logísticos , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Inquéritos e Questionários
8.
Exp Gerontol ; 70: 157-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26256471

RESUMO

Cardiovascular disease (CVD) continues to be the leading cause of mortality among all age demographics in the United States, with the highest occurrence in populations aged 65 and older. Glucose levels, particularly hyperglycemia, are associated with the premature onset of age-related diseases including CVD. A major challenge in the treatment of elderly patients with chronically elevated blood glucose is the frequency of hypoglycemic episodes. Molecular mechanisms of hypoglycemia remain unclear, but are associated with premature onset of age-related-diseases. Here we report a mitochondrial metabolic profile assessing short-term (up to six hours) and longer-term (12-24h) durations of low-glucose stress. We observed that the anti-diabetic biguanide and mitochondrial complex I inhibitor, metformin, can lower and restore the elevated oxygen consumption rate during shorter-term glucose stress to levels similar to that of cells cultured in normal glucose. This effect appears, in part, to involve activation of the 5' AMP-activated protein kinase (AMPK).


Assuntos
Glicemia/metabolismo , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/fisiologia , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA