RESUMO
BACKGROUND AND PURPOSE: Maintaining mitochondrial quality is attracting attention as a new strategy to treat diabetes and diabetic complications. We previously reported that mitochondrial hyperfission by forming a protein complex between dynamin-related protein (Drp) 1 and filamin, mediates chronic heart failure and cilnidipine, initially developed as an L/N-type Ca2+ channel blocker, improves heart failure by inhibiting Drp1-filamin protein complex. We investigated whether cilnidipine improves hyperglycaemia of various diabetic mice models. EXPERIMENTAL APPROACH: Retrospective analysis focusing on haemoglobin A1c (HbA1c) was performed in hypertensive and hyperglycaemic patients taking cilnidipine and amlodipine. After developing diabetic mice by streptozotocin (STZ) treatment, an osmotic pump including drug was implanted intraperitoneally, followed by weekly measurements of blood glucose levels. Mitochondrial morphology was analysed by electron microscopy. A Ca2+ channel-insensitive cilnidipine derivative (1,4-dihydropyridine [DHP]) was synthesized and its pharmacological effect was evaluated using obese (ob/ob) mice fed with high-fat diet (HFD). KEY RESULTS: In patients, cilnidipine was superior to amlodipine in HbA1c lowering effect. Cilnidipine treatment improved systemic hyperglycaemia and mitochondrial morphological abnormalities in STZ-exposed mice, without lowering blood pressure. Cilnidipine failed to improve hyperglycaemia of ob/ob mice, with suppressing insulin secretion. 1,4-DHP improved hyperglycaemia and mitochondria abnormality in ob/ob mice fed HFD. 1,4-DHP and cilnidipine improved basal oxygen consumption rate of HepG2 cells cultured under 25 mM glucose. CONCLUSION AND IMPLICATIONS: Inhibition of Drp1-filamin protein complex formation becomes a new strategy for type 2 diabetes treatment.
Assuntos
Diabetes Mellitus Experimental , Di-Hidropiridinas , Dinaminas , Animais , Humanos , Dinaminas/antagonistas & inibidores , Dinaminas/metabolismo , Masculino , Camundongos , Di-Hidropiridinas/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Camundongos Endogâmicos C57BL , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hemoglobinas Glicadas/metabolismo , Anlodipino/farmacologia , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Idoso , Bloqueadores dos Canais de Cálcio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Glucose/metabolismo , Camundongos ObesosRESUMO
BACKGROUND: Disruption of the BBB is a harmful event after intracranial hemorrhage (ICH), and this disruption contributes to a series of secondary injuries. We hypothesized that FGF21 may have protective effects after intracranial hemorrhage (ICH) and investigated possible underlying molecular mechanisms. METHODS: Blood samples of ICH patients were collected to determine the relationship between the serum level of FGF21 and the [Formula: see text]GCS%. Wild-type mice, SIRT6flox/flox mice, endothelial-specific SIRT6-homozygous-knockout mice (eSIRT6-/- mice) and cultured human brain microvascular endothelial cells (HCMECs) were used to determine the protective effects of FGF21 on the BBB. RESULTS: We obtained original clinical evidence from patient data identifying a positive correlation between the serum level of FGF21 and [Formula: see text]GCS%. In mice, we found that FGF21 treatment is capable of alleviating BBB damage, mitigating brain edema, reducing lesion volume and improving neurofunction after ICH. In vitro, after oxyhemoglobin injury, we further explored the protective effects of FGF21 on endothelial cells (ECs), which are a significant component of the BBB. Mitochondria play crucial roles during various types of stress reactions. FGF21 significantly improved mitochondrial biology and function in ECs, as evidenced by alleviated mitochondrial morphology damage, reduced ROS accumulation, and restored ATP production. Moreover, we found that the crucial regulatory mitochondrial factor deacylase sirtuin 6 (SIRT6) played an irreplaceable role in the effects of FGF21. Using endothelial-specific SIRT6-knockout mice, we found that SIRT6 deficiency largely diminished these neuroprotective effects of FGF21. Then, we revealed that FGF21 might promote the expression of SIRT6 via the AMPK-Foxo3a pathway. CONCLUSIONS: We provide the first evidence that FGF21 is capable of protecting the BBB after ICH by improving SIRT6-mediated mitochondrial homeostasis.
Assuntos
Células Endoteliais , Sirtuínas , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Hemorragias Intracranianas/complicações , Hemorragias Intracranianas/patologia , Camundongos Knockout , Sirtuínas/genética , Sirtuínas/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologiaRESUMO
Introduction: Recent reports indicate that mitochondrial quality decreases during non-alcoholic fatty liver disease (NAFLD) progression, and targeting the mitochondria may be a possible treatment for NAFLD. Exercise can effectively slow NAFLD progression or treat NAFLD. However, the effect of exercise on mitochondrial quality in NAFLD has not yet been established. Methods: In the present study, we fed zebrafish a high-fat diet to model NAFLD, and subjected the zebrafish to swimming exercise. Results: After 12 weeks, swimming exercise significantly reduced high-fat diet-induced liver injury, and reduced inflammation and fibrosis markers. Swimming exercise improved mitochondrial morphology and dynamics, inducing upregulation of optic atrophy 1(OPA1), dynamin related protein 1 (DRP1), and mitofusin 2 (MFN2) protein expression. Swimming exercise also activated mitochondrial biogenesis via the sirtuin 1 (SIRT1)/ AMP-activated protein kinase (AMPK)/ PPARgamma coactivator 1 alpha (PGC1α) pathway, and improved the mRNA expression of genes related to mitochondrial fatty acid oxidation and oxidative phosphorylation. Furthermore, we find that mitophagy was suppressed in NAFLD zebrafish liver with the decreased numbers of mitophagosomes, the inhibition of PTEN-induced kinase 1 (PINK1) - parkin RBR E3 ubiquitin protein ligase (PARKIN) pathway and upregulation of sequestosome 1 (P62) expression. Notably, swimming exercise partially recovered number of mitophagosomes, which was associated with upregulated PARKIN expression and decreased p62 expression. Discussion: These results demonstrate that swimming exercise could alleviate the effects of NAFLD on the mitochondria, suggesting that exercise may be beneficial for treating NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peixe-Zebra/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases , Terapia por ExercícioRESUMO
Pyruvate metabolism, a key pathway in glycolysis and oxidative phosphorylation, is crucial for energy homeostasis and mitochondrial quality control (MQC), including fusion/fission dynamics and mitophagy. Alterations in pyruvate flux and MQC are associated with reactive oxygen species accumulation and Ca2+ flux into the mitochondria, which can induce mitochondrial ultrastructural changes, mitochondrial dysfunction and metabolic dysregulation. Perturbations in MQC are emerging as a central mechanism for the pathogenesis of various metabolic diseases, such as neurodegenerative diseases, diabetes and insulin resistance-related diseases. Mitochondrial Ca2+ regulates the pyruvate dehydrogenase complex (PDC), which is central to pyruvate metabolism, by promoting its dephosphorylation. Increase of pyruvate dehydrogenase kinase (PDK) is associated with perturbation of mitochondria-associated membranes (MAMs) function and Ca2+ flux. Pyruvate metabolism also plays an important role in immune cell activation and function, dysregulation of which also leads to insulin resistance and inflammatory disease. Pyruvate metabolism affects macrophage polarization, mitochondrial dynamics and MAM formation, which are critical in determining macrophage function and immune response. MAMs and MQCs have also been intensively studied in macrophage and T cell immunity. Metabolic reprogramming connected with pyruvate metabolism, mitochondrial dynamics and MAM formation are important to macrophages polarization (M1/M2) and function. T cell differentiation is also directly linked to pyruvate metabolism, with inhibition of pyruvate oxidation by PDKs promoting proinflammatory T cell polarization. This article provides a brief review on the emerging role of pyruvate metabolism in MQC and MAM function, and how dysfunction in these processes leads to metabolic and inflammatory diseases.
Assuntos
Resistência à Insulina , Humanos , Mitocôndrias/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Inflamação/metabolismo , Piruvatos/metabolismoRESUMO
Acute kidney disease (AKD) involves multiple pathogenic mechanisms, including maladaptive repair of renal cells that are rich in mitochondria. Maintenance of mitochondrial homeostasis and quality control is crucial for normal kidney function. Mitochondrial quality control serves to maintain mitochondrial function under various conditions, including mitochondrial bioenergetics, mitochondrial biogenesis, mitochondrial dynamics (fusion and fission) and mitophagy. To date, increasing evidence indicates that mitochondrial quality control is disrupted when acute kidney disease develops. This review describes the mechanisms of mitochondria quality control in acute kidney disease, aiming to provide clues to help design new clinical treatments.
Assuntos
Nefropatias , Mitocôndrias , Humanos , Mitocôndrias/patologia , Rim , Mitofagia , Doença Aguda , Dinâmica MitocondrialRESUMO
Parkinson's disease (PD) is a multifactorial disorder, and there is strong evidence that mitochondria play an essential role in the disorder. Factors that regulate the mechanism of the mitochondrial quality control system have been drawing more and more attention. PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α) is a powerful transcription factor involved in regulation of mitochondrial function. Glucagon-like peptide 1 (GLP-1), a brain-gut peptide, can enter the central nervous system through the blood-brain barrier and play neuroprotective role. However, whether the GLP-1R agonist liraglutide regulates mitochondrial quality control system through PGC-1α is still unclear. We administered different doses of liraglutide to intervene MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD model, and then immunofluorescence, Western blot, and stereotactic injection of lentivirus to downregulate PGC-1α were used to explore the mechanisms underlying the protective effect of liraglutide in PD. The results showed that MPTP lead to decreased mitochondrial biogenesis, disrupted mitochondrial dynamics, inhibited mitochondrial autophagy, and promoted cell apoptosis. While liraglutide effectively attenuated the neurotoxicity of MPTP, including reversing the dyskinesia caused by MPTP and preserving the expression of GLP-1R, TH, and PGC-1α in the substantia nigra (SN), further experiments showed that downregulation of PGC-1α expression via stereotactic injection PGC-1α lentivirus into the SN reversed the liraglutide protective effects. By PGC-1α downregulation, we found that PGC-1α can not only regulate mitochondria biogenesis, mitochondria dynamics, and autophagy, but also regulate cell apoptosis. In summary, liraglutide has a neuroprotective effect in the PD model induced by MPTP. This protective effect is accomplished by activating PGC-1α, which regulates the mitochondrial quality control system.
Assuntos
Doença de Parkinson , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Camundongos , Mitocôndrias , Biogênese de Organelas , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Substância Negra/metabolismoRESUMO
Parkinson's disease (PD) is known as a mitochondrial disease. Some even regarded it specifically as a disorder of the complex I of the electron transport chain (ETC). The ETC is fundamental for mitochondrial energy production which is essential for neuronal health. In the past two decades, more than 20 PD-associated genes have been identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1, and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate lysosomal functions, lipid metabolism, or protein aggregation, some have been shown to indirectly affect the electron transport chain. The recent identification of CHCHD2 and UQCRC1 that are critical for functions of complex IV and complex III, respectively, provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1 in preventing cytochrome c from release, functions of ETC proteins beyond oxidative phosphorylation might also contribute to the pathogenesis of PD.
RESUMO
Mitochondria, which resemble their α-proteobacteria ancestors, are a major cellular asset, producing energy 'on the cheap' through oxidative phosphorylation. They are also a liability. Increased oxidative phosphorylation means increased oxidative stress, and damaged mitochondria incite inflammation through release of their bacteria-like macromolecules. Mitophagy (the selective macroautophagy of mitochondria) controls mitochondria quality and number to manage these risky assets. Parkin, BNIP3 and NIX were identified as being part of the first mitophagy pathways identified in mammals over a decade ago, with additional pathways, including that mediated by FUNDC1 reported more recently. Loss of Parkin or PINK1 function causes Parkinson's disease, highlighting the importance of mitophagy as a quality control mechanism in the brain. Additionally, mitophagy is induced in idiopathic Parkinson's disease and Alzheimer's disease, protects the heart and other organs against energy stress and lipotoxicity, regulates metabolism by controlling mitochondrial number in brown and beige fat, and clears mitochondria during terminal differentiation of glycolytic cells, such as red blood cells and neurons. Despite its importance in disease, mitophagy is likely dispensable under physiological conditions. This Review explores the in vivo roles of mitophagy in mammalian systems, focusing on the best studied examples - mitophagy in neurodegeneration, cardiomyopathy, metabolism, and red blood cell development - to draw out common themes.
Assuntos
Mitofagia , Doença de Parkinson , Animais , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Salidroside is the active ingredient extracted from Rhodiola rosea, and has been reported to show protective effects in cerebral ischemia, but the exact mechanisms of neuronal protective effects are still unrevealed. In this study, the protective effects of salidroside (1 µmol/L) in ameliorating neuronal injuries induced by oxygen-glucose deprivation (OGD), which is a classical model of cerebral ischemia, were clarified. The results showed that after 8 h of OGD, the mouse hippocampal neuronal cell line HT22 cells showed increased cell death, accompanied with mitochondrial fragmentation and augmented mitophagy. However, the cell viability of HT22 cells showed significant restoration after salidroside treatment. Mitochondrial morphology and mitochondrial function were effectively preserved by salidroside treatment. The protective effects of salidroside were further related to the prevention of mitochondrial over-fission. The results showed that mTOR could be recruited to the mitochondria after salidroside treatment, which might be responsible for inhibiting excessive mitophagy caused by OGD. Thus, salidroside was shown to play a protective role in reducing neuronal death under OGD by safeguarding mitochondrial function, which may provide evidence for further translational studies of salidroside in ischemic diseases.
Assuntos
Glucose/metabolismo , Glucosídeos/farmacologia , Mitocôndrias/metabolismo , Neurônios/citologia , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Fenóis/farmacologia , Animais , Isquemia Encefálica , Linhagem Celular , Sobrevivência Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Mounting evidence suggests that mitochondrial dysfunction and impaired mitophagy lead to Parkinson's disease (PD). Quercetin, one of the most abundant polyphenolic flavonoids, displays many health-promoting biological effects in many diseases. We explored the neuroprotective effect of quercetin in vivo in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD and in vitro in 6-OHDA-treated PC12 cells. In vitro, we found that quercetin (20 µM) treatment improved mitochondrial quality control, reduced oxidative stress, increased the levels of the mitophagy markers PINK1 and Parkin and decreased α-synuclein protein expression in 6-OHDA-treated PC12 cells. Moreover, our in vivo findings demonstrated that administration of quercetin also relieved 6-OHDA-induced progressive PD-like motor behaviors, mitigated neuronal death and reduced mitochondrial damage and α-synuclein accumulation in PD rats. Furthermore, the neuroprotective effect of quercetin was suppressed by knockdown of either Pink1 or Parkin.
Assuntos
Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson Secundária/tratamento farmacológico , Quercetina/administração & dosagem , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Oxidopamina/administração & dosagem , Oxidopamina/toxicidade , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismoRESUMO
Mitochondrial encephalomyopathies are disorders caused by mitochondrial and nuclear DNA mutations which affect the nervous and muscular systems. Current therapies for mitochondrial encephalomyopathies are inadequate and mostly palliative. However, stem cell-derived mitochondria transplantation has been demonstrated to play an key part in metabolic rescue, which offers great promise for mitochondrial encephalomyopathies. Here, we summarize the present status of stem cell therapy for mitochondrial encephalomyopathy and discuss mitochondrial transfer routes and the protection mechanisms of stem cells. We also identify and summarize future perspectives and challenges for the treatment of these intractable disorders based on the concept of mitochondrial transfer from stem cells.
Assuntos
Mitocôndrias/transplante , Encefalomiopatias Mitocondriais/terapia , Transplante de Células-Tronco/métodos , Animais , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Humanos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Encefalomiopatias Mitocondriais/imunologia , Encefalomiopatias Mitocondriais/metabolismo , Nanotubos , Células-Tronco/imunologia , Células-Tronco/metabolismoRESUMO
Mitochondria are critical organelles that play a key role in cellular metabolism, survival, and homeostasis. Mitochondrial dysfunction has been implicated in the pathogenesis of diabetic kidney disease. The function of mitochondria is critically regulated by several mitochondrial protein kinases, including the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1). The focus of PINK1 research has been centered on neuronal diseases. Recent studies have revealed a close link between PINK1 and many other diseases including kidney diseases. This review will provide a concise summary of PINK1 and its regulation of mitochondrial function in health and disease. The physiological role of PINK1 in the major cells involved in diabetic kidney disease including proximal tubular cells and podocytes will also be summarized. Collectively, these studies suggested that targeting PINK1 may offer a promising alternative for the treatment of diabetic kidney disease.
Assuntos
Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Suscetibilidade a Doenças , Mitocôndrias/enzimologia , Proteínas Quinases/metabolismo , Animais , Autofagia , Ativação Enzimática , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Túbulos Renais/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Podócitos/metabolismo , Proteínas Quinases/genéticaRESUMO
BACKGROUND: Several studies have proved that physical activity (PA) regulates energetic metabolism associated with mitochondrial dynamics through AMPK activation in healthy subjects. Obesity, a condition that induces oxidative stress, mitochondrial dysfunction, and low AMPK activity leads to mitochondrial fragmentation. However, few studies describe the effect of PA on mitochondrial dynamics regulation in obesity. AIM: The present study aimed to evaluate the effect of a single session of PA on mitochondrial dynamics regulation as well as its effect on mitochondrial function and organization in skeletal muscles of obese rats (Zucker fa/fa). MAIN METHODS: Male Zucker lean and Zucker fa/fa rats aged 12 to 13 weeks were divided into sedentary and subjected-to-PA (single session swimming) groups. Gastrocnemius muscle was dissected into isolated fibers, mitochondria, mRNA, and total proteins for their evaluation. KEY FINDINGS: The results showed that PA increased the Mfn-2 protein level in the lean and obese groups, whereas Drp1 levels decreased in the obese group. OMA1 protease levels increased in the lean group and decreased in the obese group. Additionally, AMPK analysis parameters (expression, protein level, and activity) did not increase in the obese group. These findings correlated with the partial restoration of mitochondrial function in the obese group, increasing the capacity to maintain the membrane potential after adding calcium as a stressor, and increasing the transversal organization level of the mitochondria analyzed in isolated fibers. SIGNIFICANCE: These results support the notion that obese rats subjected to PA maintain mitochondrial function through mitochondrial fusion activation by an AMPK-independent mechanism.
Assuntos
Mitocôndrias/patologia , Fibras Musculares Esqueléticas/patologia , Obesidade/patologia , Condicionamento Físico Animal , Adenilato Quinase/metabolismo , Animais , Biomarcadores/metabolismo , Citrato (si)-Sintase/metabolismo , DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Masculino , Potencial da Membrana Mitocondrial , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Tamanho do Órgão , Estresse Oxidativo , Fosforilação , Ratos ZuckerRESUMO
Mitochondria are essential for neuronal function because they serve not only to sustain energy and redox homeostasis but also are harbingers of death. A dysregulated mitochondrial network can cascade until function is irreparably lost, dooming cells. TBI is most prevalent in the young and comes at significant personal and societal costs. Traumatic brain injury (TBI) triggers a biphasic and mechanistically heterogenous response and this mechanistic heterogeneity has made the development of standardized treatments challenging. The secondary phase of TBI injury evolves over hours and days after the initial insult, providing a window of opportunity for intervention. However, no FDA approved treatment for neuroprotection after TBI currently exists. With recent advances in detection techniques, there has been increasing recognition of the significance and roles of mitochondrial redox lipid signaling in both acute and chronic central nervous system (CNS) pathologies. Oxidized lipids and their downstream products result from and contribute to TBI pathogenesis. Therapies targeting the mitochondrial lipid composition and redox state show promise in experimental TBI and warrant further exploration. In this review, we provide 1) an overview for mitochondrial redox homeostasis with emphasis on glutathione metabolism, 2) the key mechanisms of TBI mitochondrial injury, 3) the pathways of mitochondria specific phospholipid cardiolipin oxidation, and 4) review the mechanisms of mitochondria quality control in TBI with consideration of the roles lipids play in this process.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Animais , Lesões Encefálicas Traumáticas/patologia , Humanos , Mitocôndrias/patologia , Oxirredução , Estresse Oxidativo/fisiologiaRESUMO
Muscle atrophy is closely associated with many diseases, including diabetes and cardiac failure. Growing evidence has shown that mitochondrial dysfunction is related to muscle atrophy; however, the underlying mechanisms are still unclear. To elucidate how mitochondrial dysfunction causes muscle atrophy, we used hindlimb-immobilized mice. Mitochondrial function is optimized by balancing mitochondrial dynamics, and we observed that this balance shifted towards mitochondrial fission and that MuRF1 and atrogin-1 expression levels were elevated in these mice. We also found that the expression of yeast mitochondrial escape 1-like ATPase (Yme1L), a mitochondrial AAA protease was significantly reduced both in hindlimb-immobilized mice and carbonyl cyanide m-chlorophenylhydrazone (CCCP)-treated C2C12 myotubes. When Yme1L was depleted in myotubes, the short form of optic atrophy 1 (Opa1) accumulated, leading to mitochondrial fragmentation. Moreover, a loss of Yme1L, but not of LonP1, activated AMPK and FoxO3a and concomitantly increased MuRF1 in C2C12 myotubes. Intriguingly, the expression of myostatin, a myokine responsible for muscle protein degradation, was significantly increased by the transient knock-down of Yme1L. Taken together, our results suggest that a deficiency in Yme1L and the consequential imbalance in mitochondrial dynamics result in the activation of FoxO3a and myostatin, which contribute to the pathological state of muscle atrophy.
Assuntos
Proteína Forkhead Box O3/metabolismo , Metaloendopeptidases/antagonistas & inibidores , Mitocôndrias/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Atrofia Muscular/patologia , Miostatina/metabolismo , Animais , Regulação para Baixo , Proteína Forkhead Box O3/genética , Masculino , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Miostatina/genéticaRESUMO
AIMS: There is a large subpopulation of multinucleated polyploid cardiomyocytes (M*Pc CMs) in the adult mammalian heart. However, the pathophysiological significance of increased M*Pc CMs in heart disease is poorly understood. We sought to determine the pathophysiological significance of increased M*Pc CMs during hypoxia adaptation. METHODS AND RESULTS: A model of hypoxia-induced cardiomyocyte (CM) multinucleation and polyploidization was established and found to be associated with less apoptosis and less reactive oxygen species (ROS) production. Compared to mononucleated diploid CMs (1*2c CMs), tetraploid CMs (4c CMs) exhibited better mitochondria quality control via increased mitochondrial autophagy (mitophagy). RNA-seq revealed Prkaa2, the gene for AMPKα2, was the most obviously up-regulated autophagy-related gene. Knockdown of AMPKα2 increased apoptosis and ROS production and suppressed mitophagy in 4c CMs compared to 1*2c CMs. Rapamycin, an autophagy activator, alleviated the adverse effect of AMPKα2 knockdown. Furthermore, silencing PINK1 also increased apoptosis and ROS in 4c CMs and weakened the adaptive superiority of 4c CMs. Finally, AMPKα2-/- mutant mice exhibited exacerbation of apoptosis and ROS production via decreases in AMPKα2-mediated mitophagy in 4c CMs compared to 1*2c CMs during hypoxia. CONCLUSIONS: Compared to 1*2c CMs, hypoxia-induced 4c CMs exhibited enhanced mitochondria quality control and less apoptosis via AMPKα2-mediated mitophagy. These results suggest that multinucleation and polyploidization allow CM to better adapt to stress via enhanced mitophagy. In addition, activation of AMPKα2 may be a promising target for myocardial hypoxia-related diseases.
Assuntos
Adaptação Fisiológica , Células Gigantes/patologia , Mitofagia , Miócitos Cardíacos/patologia , Poliploidia , Adenilato Quinase/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Hipóxia Celular , Inativação Gênica , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Mutant Cu/Zn superoxide dismutase (SOD1) causes mitochondrial alterations that contribute to motor neuron demise in amyotrophic lateral sclerosis (ALS). When mitochondria are damaged, cells activate mitochondria quality control (MQC) mechanisms leading to mitophagy. Here, we show that in the spinal cord of G93A mutant SOD1 transgenic mice (SOD1-G93A mice), the autophagy receptor p62 is recruited to mitochondria and mitophagy is activated. Furthermore, the mitochondrial ubiquitin ligase Parkin and mitochondrial dynamics proteins, such as Miro1, and Mfn2, which are ubiquitinated by Parkin, and the mitochondrial biogenesis regulator PGC1α are depleted. Unexpectedly, Parkin genetic ablation delays disease progression and prolongs survival in SOD1-G93A mice, as it slows down motor neuron loss and muscle denervation and attenuates the depletion of mitochondrial dynamics proteins and PGC1α. Our results indicate that Parkin is a disease modifier in ALS, because chronic Parkin-mediated MQC activation depletes mitochondrial dynamics-related proteins, inhibits mitochondrial biogenesis, and worsens mitochondrial dysfunction.
Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Superóxido Dismutase-1/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ubiquitina-Proteína Ligases/genéticaRESUMO
VDACs three isoforms (VDAC1, VDAC2, VDAC3) are integral proteins of the outer mitochondrial membrane whose primary function is to permit the communication and exchange of molecules related to the mitochondrial functions. We have recently reported about the peculiar over-oxidation of VDAC3 cysteines. In this work we have extended our analysis, performed by tryptic and chymotryptic proteolysis and UHPLC/High Resolution ESI-MS/MS, to the other two isoforms VDAC1 and VDAC2 from rat liver mitochondria, and we have been able to find also in these proteins over-oxidation of cysteines. Further PTM of cysteines as succination has been found, while the presence of selenocysteine was not detected. Unfortunately, a short sequence stretch containing one genetically encoded cysteine was not covered both in VDAC2 and in VDAC3, raising the suspect that more, unknown modifications of these proteins exist. Interestingly, cysteine over-oxidation appears to be an exclusive feature of VDACs, since it is not present in other transmembrane mitochondrial proteins eluted by hydroxyapatite. The assignment of a functional role to these modifications of VDACs will be a further step towards the full understanding of the roles of these proteins in the cell.
Assuntos
Cisteína/química , Mitocôndrias Hepáticas/metabolismo , Processamento de Proteína Pós-Traducional , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/metabolismo , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/genéticaRESUMO
Massive mitochondrial fusion (MMF) in germinating arabidopsis seeds, together with earlier studies, suggests a significant role for MMF in the life cycle of flowering plants. MMF is likely to facilitate nucleoid transmission, mitochondrial DNA (mtDNA) recombination, and the homogenization of mitochondrial components, thus providing a type of quality control for mitochondrial populations in new generations.