Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Ageing Res Rev ; 101: 102486, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243893

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.

2.
Exp Gerontol ; 194: 112514, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971132

RESUMO

Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). The transcriptional coactivator PPARγ coactivator 1 (PGC-1a) has been identified as a key regulator of mitochondrial biogenesis and function. However, the precise structure/function relationship between PGC-1a and mitochondrial quality control remains incompletely understood. In this study, we investigated the impact of PGC-1a on AD pathology and its underlying mechanisms with a specific focus on mitochondrial axonal transport. Additionally, we generated two PGC-1α mutants by substituting leucine residues at positions 148 and 149 within the LKKLL motif or at positions 209 and 210 within the LLKYL motif with alanine. Subsequently, we examined the effects of these mutants on mutAPP-induced abnormalities in anterograde and retrograde axonal transport, disrupted mitochondrial distribution, and impaired mitophagy. Mutagenesis studies revealed that the LLKYL motif at amino acid position 209-210 within PGC-1α plays an essential role in its interaction with estrogen-related receptors (ERRα), which is necessary for restoring normal mitochondrial anterograde axonal transport, maintaining proper mitochondrial distribution, and ultimately preventing neuronal apoptosis. Furthermore, it was found that the Leu-rich motif at amino acids 209-210 within PGC-1α is crucial for rescuing mutAPP-induced impairment in mitophagy and loss of membrane potential by restoring normal mitochondrial retrograde axonal transport. Conversely, mutation of residues 148 and 149 in the LKKLL motif does not compromise the effectiveness of PGC-1α. These findings provide valuable insights into the molecular determinants governing specificity of action for PGC-1α involved in regulating mutAPP-induced deficits in mitochondrial axonal trafficking. Moreover, they suggest a potential therapeutic target for addressing Alzheimer's disease.


Assuntos
Doença de Alzheimer , Transporte Axonal , Mitocôndrias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Motivos de Aminoácidos , Camundongos , Mitofagia , Apoptose , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Mutação , Neurônios/metabolismo
3.
Adv Sci (Weinh) ; 11(35): e2404119, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39005231

RESUMO

l-2-Hydroxyglutarate (l-2-HG) is a functionally compartmentalized metabolite involved in various physiological processes. However, its subcellular distribution and mitochondrial transport remain unclear owing to technical limitations. In the present study, an ultrasensitive l-2-HG biosensor, sfLHGFRH, composed of circularly permuted yellow fluorescent protein and l-2-HG-specific transcriptional regulator, is developed. The ability of sfLHGFRH to be used for analyzing l-2-HG metabolism is first determined in human embryonic kidney cells (HEK293FT) and macrophages. Then, the subcellular distribution of l-2-HG in HEK293FT cells and the lower abundance of mitochondrial l-2-HG are identified by the sfLHGFRH-supported spatiotemporal l-2-HG monitoring. Finally, the role of the l-glutamate transporter SLC1A1 in mitochondrial l-2-HG uptake is elucidated using sfLHGFRH. Based on the design of sfLHGFRH, another highly sensitive biosensor with a low limit of detection, sfLHGFRL, is developed for the point-of-care diagnosis of l-2-HG-related diseases. The accumulation of l-2-HG in the urine of patients with kidney cancer is determined using the sfLHGFRL biosensor.


Assuntos
Técnicas Biossensoriais , Glutaratos , Mitocôndrias , Técnicas Biossensoriais/métodos , Humanos , Glutaratos/metabolismo , Mitocôndrias/metabolismo , Células HEK293 , Transporte Biológico
4.
Bioact Mater ; 39: 287-301, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38827170

RESUMO

Addressing peripheral nerve defects remains a significant challenge in regenerative neurobiology. Autografts emerged as the gold-standard management, however, are hindered by limited availability and potential neuroma formation. Numerous recent studies report the potential of wireless electronic system for nerve defects repair. Unfortunately, few has met clinical needs for inadequate electrode precision, poor nerve entrapment and insufficient bioactivity of the matrix material. Herein, we present an advanced wireless electrical nerve stimulator, based on water-responsive self-curling silk membrane with excellent bioabsorbable and biocompatible properties. We constructed a unique bilayer structure with an oriented pre-stretched inner layer and a general silk membrane as outer layer. After wetting, the simultaneous contraction of inner layer and expansion of outer layer achieved controllable super-contraction from 2D flat surface to 3D structural reconfiguration. It enables shape-adaptive wrapping to cover around nerves, overcomes the technical obstacle of preparing electrodes on the inner wall of the conduit, and prevents electrode breakage caused by material expansion in water. The use of fork capacitor-like metal interface increases the contact points between the metal and the regenerating nerve, solving the challenge of inefficient and rough electrical stimulation methods in the past. Newly developed electronic stimulator is effective in restoring 10 mm rat sciatic nerve defects comparable to autologous grafts. The underlying mechanism involves that electric stimulation enhances anterograde mitochondrial transport to match energy demands. This newly introduced device thereby demonstrated the potential as a viable and efficacious alternative to autografts for enhancing peripheral nerve repair and functional recovery.

5.
Front Oncol ; 14: 1362786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751813

RESUMO

Background: Fast adaptation of glycolytic and mitochondrial energy pathways to changes in the tumour microenvironment is a hallmark of cancer. Purely glycolytic ρ0 tumour cells do not form primary tumours unless they acquire healthy mitochondria from their micro-environment. Here we explored the effects of severely compromised respiration on the metastatic capability of 4T1 mouse breast cancer cells. Methods: 4T1 cell lines with different levels of respiratory capacity were generated; the Seahorse extracellular flux analyser was used to evaluate oxygen consumption rates, fluorescent confocal microscopy to assess the number of SYBR gold-stained mitochondrial DNA nucleoids, and the presence of the ATP5B protein in the cytoplasm and fluorescent in situ nuclear hybridization was used to establish ploidy. MinION nanopore RNA sequence analysis was used to compare mitochondrial DNA transcription between cell lines. Orthotopic injection was used to determine the ability of cells to metastasize to the lungs of female Balb/c mice. Results: OXPHOS-deficient ATP5B-KO3.1 cells did not generate primary tumours. Severely OXPHOS compromised ρ0D5 cells generated both primary tumours and lung metastases. Cells generated from lung metastasis of both OXPHOS-competent and OXPHOS-compromised cells formed primary tumours but no metastases when re-injected into mice. OXPHOS-compromised cells significantly increased their mtDNA content, but this did not result in increased OXPHOS capacity, which was not due to decreased mtDNA transcription. Gene set enrichment analysis suggests that certain cells derived from lung metastases downregulate their epithelial-to-mesenchymal related pathways. Conclusion: In summary, OXPHOS is required for tumorigenesis in this orthotopic mouse breast cancer model but even very low levels of OXPHOS are sufficient to generate both primary tumours and lung metastases.

6.
Sci Total Environ ; 934: 173119, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750743

RESUMO

Paraquat (PQ) is a broad-spectrum herbicide used worldwide and is a hazardous chemical to human health. Cumulative evidence strengthens the association between PQ exposure and the development of Parkinson's disease (PD). However, the underlying mechanism and effective interventions against PQ-induced neurotoxicity remain unclear. In this study, C57BL/6 J mice were treated with PQ (i.p., 10 mg/kg, twice a week) and melatonin (i.g., 20 mg/kg, twice a week) for 8 weeks. Results showed that PQ-induced motor deficits and midbrain dopaminergic neuronal damage in C57BL/6 J mice were protected by melatonin pretreatment. In isolated primary midbrain neurons and SK-N-SH cells, reduction of cell viability, elevation of total ROS levels, axonal mitochondrial transport defects and mitochondrial dysfunction caused by PQ were attenuated by melatonin. After screening of expression of main motors driving axonal mitochondrial transport, data showed that PQ-decreased KIF5A expression in mice midbrain and in SK-N-SH cell was antagonized by melatonin. Using the in vitro KIF5A-overexpression model, it was found that KIF5A overexpression inhibited PQ-caused neurotoxicity and mitochondrial dysfunction in SK-N-SH cells. In addition, application of MTNR1B (MT2) receptor antagonist, 4-P-PDOT, significantly counteracted the protection of melatonin against PQ-induced neurotoxicity. Further, Kif5a-knockdown diminished melatonin-induced alleviation of motor deficits and neuronal damage against PQ in C57BL/6 J mice. The present study establishes a causal link between environmental neurotoxicants exposure and PD etiology and provides effective interventive targets in the pathogenesis of PD.


Assuntos
Cinesinas , Melatonina , Mesencéfalo , Mitocôndrias , Paraquat , Animais , Camundongos , Transporte Axonal/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Herbicidas/toxicidade , Cinesinas/metabolismo , Melatonina/farmacologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Paraquat/toxicidade
7.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38577966

RESUMO

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


Assuntos
2,4-Dinitrofenol , Ácidos Graxos , Animais , 2,4-Dinitrofenol/farmacologia , Camundongos , Ácidos Graxos/metabolismo , Humanos , Malatos/metabolismo , Mitocôndrias/metabolismo , Transporte de Íons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Prótons , Ácidos Cetoglutáricos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas de Membrana Transportadoras
8.
Biochem Biophys Res Commun ; 705: 149737, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38430606

RESUMO

Mitochondria are versatile and highly dynamic organelles found in eukaryotic cells that play important roles in a variety of cellular processes. The importance of mitochondrial transport in cell metabolism, including variations in mitochondrial distribution within cells and intercellular transfer, has grown in recent years. Several studies have demonstrated that abnormal mitochondrial transport represents an early pathogenic alteration in a variety of illnesses, emphasizing its significance in disease development and progression. Mitochondrial Rho GTPase (Miro) is a protein found on the outer mitochondrial membrane that is required for cytoskeleton-dependent mitochondrial transport, mitochondrial dynamics (fusion and fission), and mitochondrial Ca2+ homeostasis. Miro, as a critical regulator of mitochondrial transport, has yet to be thoroughly investigated in illness. This review focuses on recent developments in recognizing Miro as a crucial molecule in controlling mitochondrial transport and investigates its roles in diverse illnesses. It also intends to shed light on the possibilities of targeting Miro as a therapeutic method for a variety of diseases.


Assuntos
Citoesqueleto , Mitocôndrias , Transporte Biológico , Homeostase , Células Eucarióticas
9.
FEBS Lett ; 598(3): 338-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058167

RESUMO

Since its discovery, a major debate about mitochondrial uncoupling protein 3 (UCP3) has been whether its metabolic actions result primarily from mitochondrial inner membrane proton transport, a process that decreases respiratory efficiency and ATP synthesis. However, UCP3 expression and activity are induced by conditions that would seem at odds with inefficient 'uncoupled' respiration, including fasting and exercise. Here, we demonstrate that the bacterially expressed human UCP3, reconstituted into liposomes, catalyses a strict exchange of aspartate, malate, sulphate and phosphate. The R282Q mutation abolishes the transport activity of the protein. Although the substrate specificity and inhibitor sensitivity of UCP3 display similarity with that of its close homolog UCP2, the two proteins significantly differ in their transport mode and kinetic constants.


Assuntos
Canais Iônicos , Proteínas Mitocondriais , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 2 , Proteína Desacopladora 3
10.
Biochem Soc Trans ; 51(6): 1989-2004, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38108469

RESUMO

SLC25A51 is the primary mitochondrial NAD+ transporter in humans and controls many local reactions by mediating the influx of oxidized NAD+. Intriguingly, SLC25A51 lacks several key features compared with other members in the mitochondrial carrier family, thus its molecular mechanism has been unclear. A deeper understanding would shed light on the control of cellular respiration, the citric acid cycle, and free NAD+ concentrations in mammalian mitochondria. This review discusses recent insights into the transport mechanism of SLC25A51, and in the process highlights a multitiered regulation that governs NAD+ transport. The aspects regulating SLC25A51 import activity can be categorized as contributions from (1) structural characteristics of the transporter itself, (2) its microenvironment, and (3) distinctive properties of the transported ligand. These unique mechanisms further evoke compelling new ideas for modulating the activity of this transporter, as well as new mechanistic models for the mitochondrial carrier family.


Assuntos
Mitocôndrias , NAD , Animais , Humanos , Transporte Biológico , Respiração Celular , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NAD/metabolismo
11.
EMBO Rep ; 24(10): e56596, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37575034

RESUMO

SLC25A51 is a member of the mitochondrial carrier family (MCF) but lacks key residues that contribute to the mechanism of other nucleotide MCF transporters. Thus, how SLC25A51 transports NAD+ across the inner mitochondrial membrane remains unclear. To elucidate its mechanism, we use Molecular Dynamics simulations to reconstitute SLC25A51 homology models into lipid bilayers and to generate hypotheses to test. We observe spontaneous binding of cardiolipin phospholipids to three distinct sites on the exterior of SLC25A51's central pore and find that mutation of these sites impairs cardiolipin binding and transporter activity. We also observe that stable formation of the required matrix gate is controlled by a single salt bridge. We identify binding sites in SLC25A51 for NAD+ and show that its selectivity for NAD+ is guided by an electrostatic interaction between the charged nicotinamide ring in the ligand and a negatively charged patch in the pore. In turn, interaction of NAD+ with interior residue E132 guides the ligand to dynamically engage and weaken the salt bridge gate, representing a ligand-induced initiation of transport.


Assuntos
Cardiolipinas , NAD , Cardiolipinas/metabolismo , Ligantes , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Humanos
12.
Neurobiol Dis ; 184: 106228, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454781

RESUMO

Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which is essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its potential regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses (AAVs) with Armcx1 overexpression and knockdown were constructed and administered to mice via stereotactic cortical injection. Exogenous miR-223-3p mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. It was found that Armcx1 expression decreased significantly, while miR-223-3p levels increased markedly in peri-lesion tissues after TBI. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, neuronal cell death, mitochondrial dysfunction, and axonal injury, while the knockdown of Armcx1 had the opposite effect. Armcx1 was potentially a direct target of miR-223-3p. The miR-223-3p mimic obviously reduced the Armcx1 protein level, while the miR-223-3p inhibitor had the opposite effect. Finally, the miR-223-3p inhibitor dramatically improved mitochondrial membrane potential (MMP) and increased the total length of the neurites without affecting branching numbers. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3p. Therefore, this study provides a potential therapeutic approach for treating TBI.


Assuntos
Proteínas do Domínio Armadillo , Lesões Encefálicas Traumáticas , MicroRNAs , Proteínas Mitocondriais , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/metabolismo , Morte Celular , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas do Domínio Armadillo/metabolismo , Proteínas Mitocondriais/metabolismo
13.
Mol Neurobiol ; 60(11): 6556-6565, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458986

RESUMO

Mitochondria are important organelle of eukaryotic cells. They consists of a large number of different proteins that provide most of the ATP and supply power for the growth, function, and regeneration of neurons. Therefore, smitochondrial transport ensures that adequate ATP is supplied for metabolic activities. Spinal cord injury (SCI), a detrimental condition, has high morbidity and mortality rates. Currently, the available treatments only provide symptomatic relief for long-term disabilities. Studies have implicated mitochondrial transport as a critical factor in axonal regeneration. Hence, enhancing mitochondrial transports could be beneficial for ameliorating SCI. Syntaphilin (Snph) is a mitochondrial docking protein that acts as a "static anchor," and its inhibition enhances mitochondrial transports. Therefore, Snph as a key mediator of mitochondrial transports, may contribute to improving axonal regeneration following SCI. Herein, we examine Snph's biological effects and its relation to mitochondrial pathway. Then, we elaborate on mitochondrial transports after SCI, the possible role of Snph in SCI, and some possible therapeutic approaches by Snph.


Assuntos
Axônios , Traumatismos da Medula Espinal , Humanos , Axônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Transporte Axonal , Traumatismos da Medula Espinal/metabolismo , Trifosfato de Adenosina/metabolismo , Regeneração Nervosa , Medula Espinal/metabolismo
14.
J Integr Neurosci ; 22(4): 86, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37519177

RESUMO

The fight against neurodegenerative diseases is one of the key direction of modern medicine. Unfortunately, the difficulties in understanding the factors underlying the development of neurodegeneration hinder the development of breakthrough therapeutics that can stop or at least greatly slow down the progression of these diseases. In this review, it is considered the disruption of mitochondrial transport as one of the pathogenesis factors contributing to neurodegeneration using the examples of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Here, the mechanism of mitochondrial transport under normal conditions and the mechanisms of disturbances for the indicated diseases will be considered.


Assuntos
Doença de Alzheimer , Doença de Huntington , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Mitocôndrias
15.
J Drug Target ; 31(7): 685-692, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37358358

RESUMO

Mitochondria are a crucial energy source for maintaining neuronal growth and synaptic function. Neurons possess unique morphological characteristics, which make the proper regulation of mitochondrial transport essential for meeting their energy demands. Syntaphilin (SNPH) is capable of specifically targeting the outer membrane of axonal mitochondria, anchoring them to microtubules, and thereby preventing their transport. SNPH also interacts with other mitochondrial proteins to regulate mitochondrial transport. The regulation of mitochondrial transport and anchoring mediated by SNPH is indispensable for axonal growth during neuronal development, maintenance of ATP levels during neuronal synaptic activity, and regeneration of mature neurons following damage. Precise blocking of SNPH may be an effective therapeutic strategy for neurodegenerative diseases and related mental disorders.


Assuntos
Proteínas Associadas aos Microtúbulos , Doenças Neurodegenerativas , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Axônios/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo
16.
Cells ; 12(8)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37190097

RESUMO

Amyotrophic lateral sclerosis is one of several chronic neurodegenerative conditions in which mitochondrial abnormalities are posited to contribute to disease progression. Therapeutic options targeting mitochondria include enhancing metabolism, suppressing reactive oxygen production and disrupting mitochondria-mediated programmed cell death pathways. Herein is reviewed mechanistic evidence supporting a meaningful pathophysiological role for the constellation of abnormal mitochondrial fusion, fission and transport, collectively designated mitochondrial dysdynamism, in ALS. Following this is a discussion on preclinical studies in ALS mice that seemingly validate the idea that normalizing mitochondrial dynamism can delay ALS by interrupting a vicious cycle of mitochondrial degeneration, leading to neuronal die-back and death. Finally, the relative benefits of suppressing mitochondrial fusion vs. enhancing mitochondrial fusion in ALS are speculated upon, and the paper concludes with the prediction that the two approaches could be additive or synergistic, although a side-by-side comparative trial may be challenging to perform.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/metabolismo , Apoptose , Doenças Neurodegenerativas/metabolismo , Dinâmica Mitocondrial/fisiologia
17.
Curr Opin Cell Biol ; 80: 102150, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36580830

RESUMO

Mitochondria are highly dynamic organelles that undergo rapid morphological adaptations influencing their number, transport, cellular distribution, and function, which in turn facilitate the integration of mitochondrial function with physiological changes in the cell. These mitochondrial dynamics are dependent on tightly regulated processes such as fission, fusion, and attachment to the cytoskeleton, and their defects are observed in various pathophysiological conditions including cancer, cardiovascular disease, and neurodegeneration. Various studies over the years have identified key molecular players and uncovered the mechanisms that mediate and regulate these processes and have highlighted their complexity and context-specificity. This review focuses on the recent studies that have contributed to the understanding of processes that influence mitochondrial morphology including fission, fusion, and transport in the cell.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Dinâmica Mitocondrial/fisiologia , Citoesqueleto , Microtúbulos
18.
Front Cell Dev Biol ; 10: 1030390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36478742

RESUMO

Neurodegenerative diseases (NDDs) are disorders in which neurons are lost owing to various factors, resulting in a series of dysfunctions. Their rising prevalence and irreversibility have brought physical pain to patients and economic pressure to both individuals and society. However, the pathogenesis of NDDs has not yet been fully elucidated, hampering the use of precise medication. Induced pluripotent stem cell (IPSC) modeling provides a new method for drug discovery, and exploring the early pathological mechanisms including mitochondrial dysfunction, which is not only an early but a prominent pathological feature of NDDs. In this review, we summarize the iPSC modeling approach of Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis, as well as outline typical mitochondrial dysfunction and recapitulate corresponding therapeutic strategies.

19.
Front Cell Dev Biol ; 10: 986454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325364

RESUMO

Mitochondria are dynamic organelles that undergo regulated microtubule- and actin-mediated trafficking to meet local energy and metabolic needs. Mitochondrial trafficking may be particularly critical in large cells such as eggs and early embryos where spindle formation and polar body extrusion occur in specific regions of the cytoplasm. To investigate the role of mitochondrial distribution in oocytes we have targeted the mitochondrial membrane protein, MIRO1, which couples mitochondria to the motor protein-TRAK complex. Oocyte-specific deletion of MIRO1 leads to the formation of large aggregates of mitochondria in perinuclear and cortical compartments. Mitochondria remain capable of long-range trafficking during maturation, indicating redundancy in the mechanisms coupling mitochondria to motor proteins. Polar body extrusion in the absence of MIRO1 was reduced by approximately 20%. In MIRO1-deleted zygotes, mitochondria showed increased accumulation around the pronuclei but this did not affect mitochondrial distribution to daughter blastomeres. In vitro development of parthenogenetic embryos was also reduced, although no differences were found in the fertility of oocyte-specific Miro1 KO mice. These findings demonstrate MIRO1 acts as a mitochondrial adaptor, setting mitochondrial distribution in oocytes and early embryos, and disrupting this process compromises in vitro oocyte maturation and embryo development.

20.
Cell Regen ; 11(1): 33, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184647

RESUMO

Central nervous system (CNS) neurons typically fail to regenerate their axons after injury leading to neurological impairment. Axonal regeneration is a highly energy-demanding cellular program that requires local mitochondria to supply most energy within injured axons. Recent emerging lines of evidence have started to reveal that injury-triggered acute mitochondrial damage and local energy crisis contribute to the intrinsic energetic restriction that accounts for axon regeneration failure in the CNS. Characterizing and reprogramming bioenergetic signaling and mitochondrial maintenance after axon injury-ischemia is fundamental for developing therapeutic strategies that can restore local energy metabolism and thus facilitate axon regeneration. Therefore, establishing reliable and reproducible neuronal model platforms is critical for assessing axonal energetic metabolism and regeneration capacity after injury-ischemia. In this focused methodology article, we discuss recent advances in applying cutting-edge microfluidic chamber devices in combination with state-of-the-art live-neuron imaging tools to monitor axonal regeneration, mitochondrial transport, bioenergetic metabolism, and local protein synthesis in response to injury-ischemic stress in mature CNS neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA