Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Cell Genom ; 3(11): 100435, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020970

RESUMO

Chromosome-level design-build-test-learn cycles (chrDBTLs) allow systematic combinatorial reconfiguration of chromosomes with ease. Here, we established chrDBTL with a redesigned synthetic Saccharomyces cerevisiae chromosome XV, synXV. We designed and built synXV to harbor strategically inserted features, modified elements, and synonymously recoded genes throughout the chromosome. Based on the recoded chromosome, we developed a method to enable chrDBTL: CRISPR-Cas9-mediated mitotic recombination with endoreduplication (CRIMiRE). CRIMiRE allowed the creation of customized wild-type/synthetic combinations, accelerating genotype-phenotype mapping and synthetic chromosome redesign. We also leveraged synXV as a "build-to-learn" model organism for translation studies by ribosome profiling. We conducted a locus-to-locus comparison of ribosome occupancy between synXV and the wild-type chromosome, providing insight into the effects of codon changes and redesigned features on translation dynamics in vivo. Overall, we established synXV as a versatile reconfigurable system that advances chrDBTL for understanding biological mechanisms and engineering strains.

2.
Cancer Genet ; 274-275: 33-40, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966725

RESUMO

A cohort of leukemia cases is presented with ancillary testing that includes microarray studies, karyotyping, FISH, and RNA sequencing to illustrate clonal evolution. Common evolution etiology with each case is apparent homologous mitotic recombination (HMR). The cohort includes: four cases of Pre B-cell acute lymphoblastic leukemia (B-ALL) with a single translocation derivative (19)t(1;19)(q23.3;p13.3), an acute myelogenous leukemia (AML) case with a paracentric inversion of 11q13.3q23 in both homologues confirmed as a rare KMT2A-MAML2 gene fusion, and a transplant patient in AML relapse with a t(6;11)(6q27;q23) and evolution to an additional derivative 6 chromosome. The PBX1-TCF3 fusion in the t(1;19) B-ALL subgroup has long been associated with clones that show either the balanced translocation (∼25%) or the unbalanced single derivative 19 (∼75%).  Evidence from the CMAs and FISH is consistent with HMR initiating at either the PBX1 translocation breakpoint or at a more proximal long arm site that mediates the evolution to the unbalanced form. This is contrary to the previous assumptions of either nondisjunction duplication of the normal homologue with loss of the translocation derivative 1 or an original trisomy 1 that loses the translocation derivative 1. Relapse from an unrelated transplant donor created unique allele dosage ratios in the microarray of the AML patient with the t(6;11) KMT2A-AFDN fusion.  An HMR-based evolution initiation site proximal to the 6q27 AFDN fusion gene is evident in the microarray of chromosome 6, the known oncogenic fusion derivative. The HMR selection driver in both AML cases is very likely associated with the DNA doubling of the oncogenic fusions in 6q and 11q, respectively. Since the oncogenic derivatives in the 1;19 cases are clearly the retained derivative 19, selection for the HMR clonal evolution in 1q is apparently based on the known proliferative advantage of extra copies of 1q in B-ALL and other malignancies. Although selection-based HMR can effectively initiate at any site proximal to a driver gene fusion, it appears that the translocation breaksite is common for many translocations. In addition, evidence from HMR evolution related distal 11q mutations, numerous unbalanced CCND1/IGH translocations, and the double MAML2/KMT2A presented in this study suggest that a recombinatorial "hot spot" exists near the CCND1 gene in many rearrangements or mutations within 11q.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Translocação Genética , Rearranjo Gênico , Fatores de Transcrição/genética , Leucemia Mieloide Aguda/genética , Doença Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Recidiva
3.
J Hematop ; 16(2): 111-117, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175445

RESUMO

BACKGROUND: B-lymphoblastic leukemia/lymphomas (B-ALL/LBL) are uncommon neoplasms that may be associated with a variety of cytogenetic and molecular changes. The mechanisms by which these changes arise have not been fully described. AIMS/PURPOSE: This report describes an unusual case of B-ALL/LBL with complex clonal evolution that includes BCL2 and MYC gene rearrangements. METHODS: Immunophenotyping was performed by immunohistochemistry and flow cytometry. Traditional G-band karyotyping was accompanied by fluorescence in-situ hybridization (FISH) using break-apart and dual fusion probes. Single nucleotide polymorphisms were assessed using a high-density DNA microarray. RESULTS: The karyotype of the blasts showed reciprocal translocation of chromosomes 4 and 18, reciprocal translocation of chromosomes 8 and 14 with two copies of the oncogenic translocation derivative(14)t(8;14), and no normal chromosome 14. FISH studies showed complex IGH-BCL2 and IGH-MYC fusion signals. CONCLUSIONS: A clonal evolution model involving multiple chromosomal translocations and mitotic recombination is postulated to account for the karyotype, FISH, and microarray results but leaves unresolved the exact order of the evolutionary changes.


Assuntos
Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Evolução Clonal/genética , Rearranjo Gênico/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
4.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36205042

RESUMO

The appearance of genomic variations such as loss of heterozygosity (LOH) has a significant impact on phenotypic diversity observed in a population. Recent large-scale yeast population genomic surveys have shown a high frequency of these events in natural isolates and more particularly in polyploids. However, the frequency, extent, and spectrum of LOH in polyploid organisms have never been explored and are poorly characterized to date. Here, we accumulated 5,163 LOH events over 1,875 generations in 76 mutation accumulation (MA) lines comprising nine natural heterozygous diploid, triploid, and tetraploid natural S. cerevisiae isolates from different ecological and geographical origins. We found that the rate and spectrum of LOH are variable across ploidy levels. Of the total accumulated LOH events, 8.5%, 21%, and 70.5% of them were found in diploid, triploid, and tetraploid MA lines, respectively. Our results clearly show that the frequency of generated LOH events increases with ploidy level. In fact, the cumulative LOH rates were estimated to be 9.3 × 10-3, 2.2 × 10-2, and 8.4 × 10-2 events per division for diploids, triploids, and tetraploids, respectively. In addition, a clear bias toward the accumulation of interstitial and short LOH tracts is observed in triploids and tetraploids compared with diploids. The variation of the frequency and spectrum of LOH events across ploidy level could be related to the genomic instability, characterizing higher ploidy isolates.


Assuntos
Saccharomyces cerevisiae , Tetraploidia , Saccharomyces cerevisiae/genética , Triploidia , Ploidias , Perda de Heterozigosidade
5.
Appl Microbiol Biotechnol ; 106(13-16): 4921-4927, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35831455

RESUMO

The nonconventional yeast Xanthophyllomyces dendrorhous is an established platform for genetic pathway modification. A genetic tool box is available and can be used extensively to select from for different engineering strategies. Due to the diploid nature of X. dendrorhous, genetic transformation typically results in heterozygous lines. They are genetically unstable and lose their phenotypes caused by mitotic recombination. In addition, targeted integration for inactivation of genes of the carotenoid pathway resulted in an intermediary phenotype of incomplete pathway disruption. This issue is the main scope of this review. It is illustrated by using genetic modification of the carotenoid pathway of X. dendrorhous as a model system with a focus on the demonstration of how to solve these problems by generation of homozygous lines. They can be selected from heterozygous transformants after spontaneous mitotic recombination and selection or after induced meiotic recombination. Corresponding methods of how to proceed including the initiation of a sexual cycle are described. The selected segregated lines are stable in fermenter cultures without the need of selection pressure. This is an essential requirement for any industrial application. KEY POINTS: • Genetic interventions of diploid yeasts result in heterozygous transformants that are unstable without selection pressure. • This is due to mitotic recombination leading to the elimination of inserted DNA. • Stable homozygous lines can be obtained and selected after either meiotic or mitotic recombination.


Assuntos
Basidiomycota , Diploide , Basidiomycota/genética , Basidiomycota/metabolismo , Carotenoides/metabolismo , Leveduras/metabolismo
6.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682766

RESUMO

The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor for more than 200 enzymes involved in many metabolic pathways. Moreover, PLP has antioxidant properties and quenches the reactive oxygen species (ROS). Accordingly, PLP deficiency causes chromosome aberrations in Drosophila, yeast, and human cells. In this work, we investigated whether PLP depletion can also cause loss of heterozygosity (LOH) of the tumor suppressor warts (wts) in Drosophila. LOH is usually initiated by DNA breakage in heterozygous cells for a tumor suppressor mutation and can contribute to oncogenesis inducing the loss of the wild-type allele. LOH at the wts locus results in epithelial wts homozygous tumors easily detectable on adult fly cuticle. Here, we found that PLP depletion, induced by two PLP inhibitors, promotes LOH of wts locus producing significant frequencies of wts tumors (~7% vs. 2.3%). In addition, we identified the mitotic recombination as a possible mechanism through which PLP deficiency induces LOH. Moreover, LOH of wts locus, induced by PLP inhibitors, was rescued by PLP supplementation. These data further confirm the role of PLP in genome integrity maintenance and indicate that vitamin B6 deficiency may impact on cancer also by promoting LOH.


Assuntos
Deficiência de Vitamina B 6 , Verrugas , Animais , Drosophila/genética , Drosophila/metabolismo , Perda de Heterozigosidade , Fosfato de Piridoxal , Vitamina B 6/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(12): e2119588119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290114

RESUMO

SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.


Assuntos
DNA Polimerase II , Saccharomyces cerevisiae , DNA Polimerase II/metabolismo , Replicação do DNA/genética , Instabilidade Genômica/genética , Humanos , Mutação , Saccharomyces cerevisiae/metabolismo
8.
Methods Enzymol ; 661: 183-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776212

RESUMO

Mitotic crossovers have the potential to cause large-scale genome rearrangements. Here, we describe high-throughput, single-cell, whole-genome sequencing methods for mapping crossovers genome-wide at scale. The methods are generalizable to various eukaryotes and to other end points requiring high-throughput, high-coverage single cell sequencing.


Assuntos
Genoma
9.
Elife ; 102021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34159898

RESUMO

The dynamics and diversity of the appearance of genetic variants play an essential role in the evolution of the genome and the shaping of biodiversity. Recent population-wide genome sequencing surveys have highlighted the importance of loss of heterozygosity (LOH) events and have shown that they are a neglected part of the genetic diversity landscape. To assess the extent, variability, and spectrum, we explored the accumulation of LOH events in 169 heterozygous diploid Saccharomyces cerevisiae mutation accumulation lines across nine genetic backgrounds. In total, we detected a large set of 22,828 LOH events across distinct genetic backgrounds with a heterozygous level ranging from 0.1% to 1%. LOH events are very frequent with a rate consistently much higher than the mutation rate, showing their importance for genome evolution. We observed that the interstitial LOH (I-LOH) events, resulting in internal short LOH tracts, were much frequent (n = 19,660) than the terminal LOH (T-LOH) events, that is, tracts extending to the end of the chromosome (n = 3168). However, the spectrum, the rate, and the fraction of the genome under LOH vary across genetic backgrounds. Interestingly, we observed that the more the ancestors were heterozygous, the more they accumulated T-LOH events. In addition, frequent short I-LOH tracts are a signature of the lines derived from hybrids with low spore fertility. Finally, we found lines showing almost complete homozygotization during vegetative progression. Overall, our results highlight that the variable dynamics of the LOH accumulation across distinct genetic backgrounds might lead to rapid differential genome evolution during vegetative growth.


Assuntos
Patrimônio Genético , Genoma Fúngico , Perda de Heterozigosidade , Acúmulo de Mutações , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33705548

RESUMO

Genomic rearrangements have been associated with the acquisition of adaptive phenotypes, allowing organisms to efficiently generate new favorable genetic combinations. The diploid genome of Candida albicans is highly plastic, displaying numerous genomic rearrangements that are often the by-product of the repair of DNA breaks. For example, DNA double-strand breaks (DSB) repair using homologous-recombination pathways are a major source of loss-of-heterozygosity (LOH), observed ubiquitously in both clinical and laboratory strains of C. albicans. Mechanisms such as break-induced replication (BIR) or mitotic crossover (MCO) can result in long tracts of LOH, spanning hundreds of kilobases until the telomere. Analysis of I-SceI-induced BIR/MCO tracts in C. albicans revealed that the homozygosis tracts can ascend several kilobases toward the centromere, displaying homozygosis from the break site toward the centromere. We sought to investigate the molecular mechanisms that could contribute to this phenotype by characterizing a series of C. albicans DNA repair mutants, including pol32-/-, msh2-/-, mph1-/-, and mus81-/-. The impact of deleting these genes on genome stability revealed functional differences between Saccharomyces cerevisiae (a model DNA repair organism) and C. albicans. In addition, we demonstrated that ascending LOH tracts toward the centromere are associated with intrinsic features of BIR and potentially involve the mismatch repair pathway which acts upon natural heterozygous positions. Overall, this mechanistic approach to study LOH deepens our limited characterization of DNA repair pathways in C. albicans and brings forth the notion that centromere proximal alleles from DNA break sites are not guarded from undergoing LOH.


Assuntos
Candida albicans/genética , Reparo do DNA , Alelos , Candida albicans/metabolismo , Cromossomos Fúngicos/metabolismo , Quebras de DNA , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Diploide , Rearranjo Gênico , Homozigoto , Perda de Heterozigosidade , Mutação , Recombinação Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Curr Genet ; 67(1): 57-63, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159552

RESUMO

The rates and patterns by which cells acquire mutations profoundly shape their evolutionary trajectories and phenotypic potential. Conventional models maintain that mutations are acquired independently of one another over many successive generations. Yet, recent evidence suggests that cells can also experience mutagenic processes that drive rapid genome evolution. One such process manifests as punctuated bursts of genomic instability, in which multiple new mutations are acquired simultaneously during transient episodes of genomic instability. This mutational mode is reminiscent of the theory of punctuated equilibrium, proposed by Stephen Jay Gould and Niles Eldredge in 1972 to explain the burst-like appearance of new species in the fossil record. In this review, we survey the dominant and emerging theories of eukaryotic genome evolution with a particular focus on the growing body of work that substantiates the existence and importance of punctuated bursts of genomic instability. In addition, we summarize and discuss two recent studies from our own group, the results of which indicate that punctuated bursts systemic genomic instability (SGI) can rapidly reconfigure the structure of the diploid genome of Saccharomyces cerevisiae.


Assuntos
Evolução Biológica , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Instabilidade Genômica/genética
12.
Proc Natl Acad Sci U S A ; 117(45): 28191-28200, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106417

RESUMO

Genomic alterations including single-base mutations, deletions and duplications, translocations, mitotic recombination events, and chromosome aneuploidy generate genetic diversity. We examined the rates of all of these genetic changes in a diploid strain of Saccharomyces cerevisiae by whole-genome sequencing of many independent isolates (n = 93) subcloned about 100 times in unstressed growth conditions. The most common alterations were point mutations and small (<100 bp) insertion/deletions (n = 1,337) and mitotic recombination events (n = 1,215). The diploid cells of most eukaryotes are heterozygous for many single-nucleotide polymorphisms (SNPs). During mitotic cell divisions, recombination can produce derivatives of these cells that have become homozygous for the polymorphisms, termed loss-of-heterozygosity (LOH) events. LOH events can change the phenotype of the cells and contribute to tumor formation in humans. We observed two types of LOH events: interstitial events (conversions) resulting in a short LOH tract (usually less than 15 kb) and terminal events (mostly cross-overs) in which the LOH tract extends to the end of the chromosome. These two types of LOH events had different distributions, suggesting that they may have initiated by different mechanisms. Based on our results, we present a method of calculating the probability of an LOH event for individual SNPs located throughout the genome. We also identified several hotspots for chromosomal rearrangements (large deletions and duplications). Our results provide insights into the relative importance of different types of genetic alterations produced during vegetative growth.


Assuntos
Cromossomos Fúngicos/genética , Mutação/genética , Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , Diploide , Conversão Gênica/genética , Rearranjo Gênico/genética , Perda de Heterozigosidade/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Saccharomyces cerevisiae/citologia
13.
Proc Natl Acad Sci U S A ; 117(45): 28221-28231, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106418

RESUMO

Conventional models of genome evolution are centered around the principle that mutations form independently of each other and build up slowly over time. We characterized the occurrence of bursts of genome-wide loss-of-heterozygosity (LOH) in Saccharomyces cerevisiae, providing support for an additional nonindependent and faster mode of mutation accumulation. We initially characterized a yeast clone isolated for carrying an LOH event at a specific chromosome site, and surprisingly found that it also carried multiple unselected rearrangements elsewhere in its genome. Whole-genome analysis of over 100 additional clones selected for carrying primary LOH tracts revealed that they too contained unselected structural alterations more often than control clones obtained without any selection. We also measured the rates of coincident LOH at two different chromosomes and found that double LOH formed at rates 14- to 150-fold higher than expected if the two underlying single LOH events occurred independently of each other. These results were consistent across different strain backgrounds and in mutants incapable of entering meiosis. Our results indicate that a subset of mitotic cells within a population can experience discrete episodes of systemic genomic instability, when the entire genome becomes vulnerable and multiple chromosomal alterations can form over a narrow time window. They are reminiscent of early reports from the classic yeast genetics literature, as well as recent studies in humans, both in cancer and genomic disorder contexts. The experimental model we describe provides a system to further dissect the fundamental biological processes responsible for punctuated bursts of structural genomic variation.


Assuntos
Genoma Fúngico/genética , Instabilidade Genômica/genética , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos/genética , Perda de Heterozigosidade/genética , Mutação/genética , Recombinação Genética/genética
14.
AMB Express ; 10(1): 146, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804300

RESUMO

High temperature causes ubiquitous environmental stress to microorganisms, but studies have not fully explained whether and to what extent heat shock would affect genome stability. Hence, this study explored heat-shock-induced genomic alterations in the yeast Saccharomyces cerevisiae. Using genetic screening systems and customized single nucleotide polymorphism (SNP) microarrays, we found that heat shock (52 °C) for several minutes could heighten mitotic recombination by at least one order of magnitude. More than half of heat-shock-induced mitotic recombinations were likely to be initiated by DNA breaks in the S/G2 phase of the cell cycle. Chromosomal aberration, mainly trisomy, was elevated hundreds of times in heat-shock-treated cells than in untreated cells. Distinct chromosomal instability patterns were also observed between heat-treated and carbendazim-treated yeast cells. Finally, we demonstrated that heat shock stimulates fast phenotypic evolutions (such as tolerance to ethanol, vanillin, fluconazole, and tunicamycin) in the yeast population. This study not only provided novel insights into the effect of temperature fluctuations on genomic integrity but also developed a simple protocol to generate an aneuploidy mutant of yeast.

15.
G3 (Bethesda) ; 10(9): 3309-3319, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32727920

RESUMO

A growing body of evidence suggests that mutation rates exhibit intra-species specific variation. We estimated genome-wide loss of heterozygosity (LOH), gross chromosomal changes, and single nucleotide mutation rates to determine intra-species specific differences in hybrid and homozygous strains of Saccharomyces cerevisiae The mutation accumulation lines of the S. cerevisiae hybrid backgrounds - S288c/YJM789 (S/Y) and S288c/RM11-1a (S/R) were analyzed along with the homozygous diploids RM11, S288c, and YJM145. LOH was extensive in both S/Y and S/R hybrid backgrounds. The S/Y background also showed longer LOH tracts, gross chromosomal changes, and aneuploidy. Short copy number aberrations were observed in the S/R background. LOH data from the S/Y and S/R hybrids were used to construct a LOH map for S288c to identify hotspots. Further, we observe up to a sixfold difference in single nucleotide mutation rates among the S. cerevisiae S/Y and S/R genetic backgrounds. Our results demonstrate LOH is common during mitotic divisions in S. cerevisiae hybrids and also highlight genome-wide differences in LOH patterns and rates of single nucleotide mutations between commonly used S. cerevisiae hybrid genetic backgrounds.


Assuntos
Taxa de Mutação , Saccharomyces cerevisiae , Heterozigoto , Perda de Heterozigosidade , Mutação , Saccharomyces cerevisiae/genética
16.
Methods Mol Biol ; 2152: 179-189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524553

RESUMO

Embryos deficient for an essential gene may show complex phenotypes that reflect pleiotropic functions and non-cell-autonomous requirements for the encoded protein. The generation of mosaic animals, where most cells are wild type, but a few cells are mutant, is a powerful tool permitting the detailed analysis of the cell autonomous function of a gene, in a particular cell type, at cellular and subcellular resolutions. Here we apply this method to the analysis of the Cerebral Cavernous Malformations 3 (CCM3) pathway in Drosophila.The conserved CCM3 protein functions together with its binding partner, Germinal Center Kinase III (Wheezy/GckIII in Drosophila, MST3, STK24, and STK25 in human) in the regulation of tube morphogenesis (Bergametti et al. Am J Hum Genet. 76:42-51, 2005; Fidalgo et al. J Cell Sci. 123:1274-1284, 2010; Guclu et al. Neurosurgery. 57:1008-1013, 2005; Lant et al. Nat Commun. 6:6449, 2015; Song et al. Dev Cell. 25:507-519, 2013; Ceccarelli et al. J Biol Chem. 286:25056-25064, 2011; Rehain-Bell et al. Curr Biol. 27:860-867, 2017; Xu et al. Structure. 21:1059-1066, 2013; Zhang et al. Front Biosci. 17:2295-2305, 2012; Zhang et al. Dev Cell. 27:215-226, 2013; Zheng et al. J Clin Invest. 120:2795-2804, 2010). The Drosophila proteins play a role in the regulation of tube shape in the tracheal (respiratory) system, analogous to the role of the human proteins in the vascular system. To understand the cellular basis for tube dilation defects caused by loss of pathway function, we describe techniques for the generation and analysis of positively marked homozygous mutant GckIII tracheal cells, coupled with an "open book" preparation that can be subjected to immunofluorescent analysis. Dozens of mutant tracheal cells are generated per mosaic animal, and neighboring heterozygous cells in the same animal serve as ideal internal controls.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Drosophila/genética , Organogênese/genética , Traqueia/embriologia , Animais , Biomarcadores , Imunofluorescência , Larva , Mitose/genética , Morfogênese/genética , Mosaicismo , Fenótipo , Recombinação Genética
17.
Mob DNA ; 11: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082426

RESUMO

BACKGROUND: Transposable elements (TEs) are endogenous mutagens and their harmful effects are especially evident in syndromes of hybrid dysgenesis. In Drosophila virilis, hybrid dysgenesis is a syndrome of incomplete gonadal atrophy that occurs when males with multiple active TE families fertilize females that lack active copies of the same families. This has been demonstrated to cause the transposition of paternally inherited TE families, with gonadal atrophy driven by the death of germline stem cells. Because there are abundant, active TEs in the male inducer genome, that are not present in the female reactive genome, the D. virilis syndrome serves as an excellent model for understanding the effects of hybridization between individuals with asymmetric TE profiles. RESULTS: Using the D. virilis syndrome of hybrid dysgenesis as a model, we sought to determine how the landscape of germline recombination is affected by parental TE asymmetry. Using a genotyping-by-sequencing approach, we generated a high-resolution genetic map of D. virilis and show that recombination rate and TE density are negatively correlated in this species. We then contrast recombination events in the germline of dysgenic versus non-dysgenic F1 females to show that the landscape of meiotic recombination is hardly perturbed during hybrid dysgenesis. In contrast, hybrid dysgenesis in the female germline increases transmission of chromosomes with mitotic recombination. Using a de novo PacBio assembly of the D. virilis inducer genome we show that clusters of mitotic recombination events in dysgenic females are associated with genomic regions with transposons implicated in hybrid dysgenesis. CONCLUSIONS: Overall, we conclude that increased mitotic recombination is likely the result of early TE activation in dysgenic progeny, but a stable landscape of meiotic recombination indicates that either transposition is ameliorated in the adult female germline or that regulation of meiotic recombination is robust to ongoing transposition. These results indicate that the effects of parental TE asymmetry on recombination are likely sensitive to the timing of transposition.

18.
Genes (Basel) ; 11(1)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936815

RESUMO

The fission yeast-Schizosaccharomyces pombe-has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.


Assuntos
Replicação do DNA/genética , Mitose/genética , Recombinação Genética/genética , Divisão Celular/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Mitose/fisiologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
19.
J Basic Microbiol ; 60(4): 380-385, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31898333

RESUMO

Aspergillus nidulans is a fungal model organism extensively used in genetic approaches. It may reproduce sexually and asexually, with a well-defined parasexual cycle. The current paper demonstrates that the limitation of nitrogen source facilitates the production of A. nidulans's nonmeiotic recombinants directly from heterokaryons, without the recovery of the diploid phase. Heterokaryons formed between master strains were inoculated in sodium nitrate-low (basal medium [BM]) and sodium nitrate-rich media (minimal medium [MM]). All mitotic segregants produced by the heterokaryons were tested for their mitotic stability in the presence of benomyl, the haploidizing agent. Only mitotically stable haploid segregants were selected for subsequent analysis. Phenotypic analyses of such haploids favored the characterization of nonmeiotic recombinants. As the number of such recombinants was higher in BM than in MM, nitrogen limitation may have facilitated the isolation of nonmeiotic recombinants from heterokaryons by stimulating nuclear fusion still inside the heterokaryotic mycelium as a survival strategy.


Assuntos
Aspergillus nidulans/genética , Mitose , Nitrogênio/química , Recombinação Genética , Benomilo/química , Meios de Cultura/química , Diploide , Haploidia , Nitratos/química
20.
Genes (Basel) ; 10(11)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703352

RESUMO

Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.


Assuntos
Candida/genética , Cryptococcus/genética , Instabilidade Genômica , Recombinação Homóloga , Mitose , Adaptação Fisiológica , Candida/patogenicidade , Cryptococcus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA