RESUMO
While up to 50% of children requiring kidney replacement therapy have congenital anomalies of the kidney and urinary tract (CAKUT), they represent only a fraction of the total patient population with CAKUT. The extreme variability in clinical outcome underlines the fundamental need to devise personalized clinical management strategies for individuals with CAKUT. Better understanding of the pathophysiology of abnormal kidney and urinary tract development provides a framework for precise diagnoses and prognostication of patients, the identification of biomarkers and disease modifiers, and, thus, the development of personalized strategies for treatment. In this review, we provide a state-of-the-art overview of the currently known genetic causes, including rare variants in kidney and urinary tract development genes, genomic disorders, and common variants that have been attributed to CAKUT. Furthermore, we discuss the impact of environmental factors and their interactions with developmental genes in kidney and urinary tract malformations. Finally, we present multi-angle translational modalities to validate candidate genes and environmental factors and shed light on future strategies to better understand the molecular underpinnings of CAKUT.
RESUMO
Disease-associated microglia (DAM), initially described in mouse models of neurodegenerative diseases, have been classified into two related states; starting from a TREM2-independent DAM1 state to a TREM2 dependent state termed DAM2, with each state being characterized by the expression of specific marker genes1. Recently, single-cell (sc)RNA-Seq studies have reported the existence of DAMs in humans2-6; however, whether DAMs play beneficial or detrimental roles in the context of neurodegeneration is still under debate7,8. Here, we present a pharmacological approach to mimic human DAM in vitro by exposing different human microglia models to selected histone deacetylase (HDAC) inhibitors. We also provide an initial functional characterization of our model system, showing a specific increase of amyloid beta phagocytosis along with a reduction of MCP-1 secretion. Additionally, we report an increase in MITF expression, a transcription factor previously described to drive expression towards the DAM phenotype. We further identify CADM1, LIPA and SCIN as DAM-marker genes shared across various proposed DAM signatures and in our model systems. Overall, our strategy for targeted microglial polarization bears great potential to further explore human DAM function and biology.
RESUMO
Norovirus infections are a leading cause of gastroenteritis worldwide. Despite the substantial global health burden and economic impact, there are currently no approved antiviral therapeutics or vaccines. Additionally, much of our knowledge of norovirus comes from experiments using surrogate viruses, such as murine norovirus and feline calicivirus. The challenge surrounding human norovirus research arises from a lack of robust cell culture systems and efficient animal models. In this review, we explore recent advances in the in vitro cultivation of human norovirus and reverse genetics systems and discuss commonly used in vivo models. We summarize the current understanding of both innate and adaptive immune responses to norovirus infection and provide an overview of vaccine strategies and the current clinical trial landscape, with a focus on the only vaccine candidate that has reached phase III clinical development stage.
Assuntos
Infecções por Caliciviridae , Norovirus , Vacinas Virais , Norovirus/imunologia , Norovirus/genética , Humanos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Animais , Vacinas Virais/imunologia , Gastroenterite/virologia , Gastroenterite/prevenção & controle , Gastroenterite/imunologia , Imunidade Adaptativa , Cultura de Vírus/métodos , Imunidade Inata , Modelos Animais de Doenças , CamundongosRESUMO
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
RESUMO
The study of moss calyptra form and function began almost 250 years ago, but calyptra research has remained a niche endeavor focusing on only a small number of species. Recent advances have focused on calyptra cuticular waxes, which function in dehydration protection of the immature sporophyte apex. The physical presence of the calyptra also plays a role in sporophyte development, potentially via its influence on auxin transport. Progress developing genomic resources for mosses beyond the model Physcomitrium patens, specifically for species with larger calyptrae and taller sporophytes, in combination with advances in CRISPR-Cas9 genome editing will enable the influence of the calyptra on gene expression and the production of RNAs and proteins that coordinate sporophyte development to be explored.
Assuntos
Bryopsida , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Briófitas/crescimento & desenvolvimento , Briófitas/genética , Briófitas/metabolismoRESUMO
The immortalised human hepatocellular HepG2 cell line is commonly used for toxicology studies as an alternative to animal testing due to its characteristic liver-distinctive functions. However, little is known about the baseline metabolic changes within these cells upon toxin exposure. We have applied 1H Nuclear Magnetic Resonance (NMR) spectroscopy to characterise the biochemical composition of HepG2 cells at baseline and post-exposure to hydrogen peroxide (H2O2). Metabolic profiles of live cells, cell extracts, and their spent media supernatants were obtained using 1H high-resolution magic angle spinning (HR-MAS) NMR and 1H NMR spectroscopic techniques. Orthogonal partial least squares discriminant analysis (O-PLS-DA) was used to characterise the metabolites that differed between the baseline and H2O2 treated groups. The results showed that H2O2 caused alterations to 10 metabolites, including acetate, glutamate, lipids, phosphocholine, and creatine in the live cells; 25 metabolites, including acetate, alanine, adenosine diphosphate (ADP), aspartate, citrate, creatine, glucose, glutamine, glutathione, and lactate in the cell extracts, and 22 metabolites, including acetate, alanine, formate, glucose, pyruvate, phenylalanine, threonine, tryptophan, tyrosine, and valine in the cell supernatants. At least 10 biochemical pathways associated with these metabolites were disrupted upon toxin exposure, including those involved in energy, lipid, and amino acid metabolism. Our findings illustrate the ability of NMR-based metabolic profiling of immortalised human cells to detect metabolic effects on central metabolism due to toxin exposure. The established data sets will enable more subtle biochemical changes in the HepG2 model cell system to be identified in future toxicity testing.
Assuntos
Peróxido de Hidrogênio , Espectroscopia de Prótons por Ressonância Magnética , Humanos , Células Hep G2 , Peróxido de Hidrogênio/toxicidade , Espectroscopia de Ressonância Magnética , Metaboloma/efeitos dos fármacos , Testes de Toxicidade/métodosRESUMO
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
RESUMO
Microphysiological systems (MPS) are gaining broader application in the pharmaceutical industry but have primarily been leveraged in early discovery toxicology and pharmacology studies with small molecules. The adoption of MPS offers a promising avenue to reduce animal use, improve in-vitro-to-in-vivo translation of pharmacokinetics/pharmacodynamics and toxicity correlation, and provide mechanistic understanding of model species suitability. While MPS have demonstrated utility in these areas with small molecules and biologics, MPS models in cell therapy development have not been fully explored, let alone validated. Distinguishing features of MPS, including long-term viability and physiologically relevant expression of functional enzymes, receptors, and pharmacological targets make them attractive tools for nonclinical characterization. However, there is currently limited published evidence of MPS being utilized to study the disposition, metabolism, pharmacology, and toxicity profiles of cell therapies. This review provides an industry perspective on the nonclinical application of MPS on cell therapies, first with a focus on oncology applications followed by examples in regenerative medicine.
Microphysiological systems (MPS) are advanced cell models, applied in the pharmaceutical industry to characterize novel therapies. While their application in studies of small molecule therapies has been very successful, the use of these models to study cell therapies has been limited. Cell therapies consist of cells and are living drugs, often with complex biological mechanisms of action, which can be very challenging to study. However, MPS have several features that make them attractive for studying cell therapies, including possibilities for longer-term studies and the ability to mimic physiologically relevant biological functions. MPS can mimic complex biological systems and processes, as such, the adoption of MPS offers a promising avenue to reduce the use of animals in the characterization of novel therapies. This review provides an industry perspective on current challenges and highlights opportunities for using MPS in the development of cell therapies.
Assuntos
Alternativas aos Testes com Animais , Terapia Baseada em Transplante de Células e Tecidos , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Medicina Regenerativa/métodos , Sistemas MicrofisiológicosRESUMO
I was fortunate enough to start my career at what was the dawn of modern-day molecular biology and to apply it to an important health problem. While my early work focused on fundamental science, the desire to understand human disease better and to find practical applications for research discoveries resulted, over the following decades, in creating a stream of translational research directed specifically toward epithelial cancers. This could only have been possible through multiple collaborations. This type of team science would eventually become a hallmark of my career. With the development of higher throughput molecular techniques, the pace of research and discovery has quickened, and the concept of personalized medicine based on genomics is now coming to fruition. I hope my legacy will not just reflect my published works, but will also include the impact I have had on the development of the next generation of scientists and clinician scientists who inspired me with their dedication, knowledge, and enthusiasm.
Assuntos
Pesquisa Translacional Biomédica , Humanos , História do Século XXI , História do Século XX , Biologia Molecular , Medicina de Precisão , Genômica , Ciência Translacional BiomédicaRESUMO
Plant proteins often carry off-notes, necessitating customized aroma addition. In vitro studies revealed protein-aroma binding, limiting release during consumption. This study employs in vivo nose space proton transfer reaction-time-of-flight-mass spectrometry and dynamic sensory evaluation (time intensity) to explore in-mouth interactions. In a lupin protein-based aqueous system, a sensory evaluation of a trained "green" attribute was conducted simultaneously with aroma release of hexanal, nonanal, and 2-nonanone during consumption. Results demonstrated that enlarging aldehyde chains and relocating the keto group reduced maximum perceived intensity (Imax_R) by 71.92 and 72.25%. Protein addition decreased Imax_R by 30.91, 36.84, and 72.41%, indicating protein-aroma interactions. Sensory findings revealed a perceived intensity that was lower upon protein addition. Aroma lingering correlated with aroma compounds' volatility and hydrophobicity, with nonanal exhibiting the longest persistence. In vitro mucin addition increased aroma binding four to 12-fold. Combining PTR-ToF-MS and time intensity elucidated crucial food behavior, i.e., protein-aroma interactions, that are pivotal for food design.
Assuntos
Aldeídos , Odorantes , Compostos Orgânicos Voláteis , Odorantes/análise , Prótons , Boca/química , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análiseRESUMO
Despite receiving significant recent attention, the relevance of structural variation (SV) in driving phenotypic diversity remains understudied, although recent advances in long-read sequencing, bioinformatics and pangenomic approaches have enhanced SV detection. We review the role of SVs in shaping phenotypes in avian model systems, and identify some general patterns in SV type, length and their associated traits. We found that most of the avian SVs so far identified are short indels in chickens, which are frequently associated with changes in body weight and plumage colouration. Overall, we found that relatively short SVs are more frequently detected, likely due to a combination of their prevalence compared to large SVs, and a detection bias, stemming primarily from the widespread use of short-read sequencing and associated analytical methods. SVs most commonly involve non-coding regions, especially introns, and when patterns of inheritance were reported, SVs associated primarily with dominant discrete traits. We summarise several examples of phenotypic convergence across different species, mediated by different SVs in the same or different genes and different types of changes in the same gene that can lead to various phenotypes. Complex rearrangements and supergenes, which can simultaneously affect and link several genes, tend to have pleiotropic phenotypic effects. Additionally, SVs commonly co-occur with single-nucleotide polymorphisms, highlighting the need to consider all types of genetic changes to understand the basis of phenotypic traits. We end by summarising expectations for when long-read technologies become commonly implemented in non-model birds, likely leading to an increase in SV discovery and characterisation. The growing interest in this subject suggests an increase in our understanding of the phenotypic effects of SVs in upcoming years.
Assuntos
Galinhas , Fenótipo , Animais , Galinhas/genética , Aves/genética , Variação Estrutural do Genoma , Mutação INDELRESUMO
Ageing causes progressive decline in metabolic, behavioural, and physiological functions, leading to a reduced health span. The extracellular matrix (ECM) is the three-dimensional network of macromolecules that provides our tissues with structure and biomechanical resilience. Imbalance between damage and repair/regeneration causes the ECM to undergo structural deterioration with age, contributing to age-associated pathology. The ECM 'Ageing Across the Life Course' interdisciplinary research network (ECMage) was established to bring together researchers in the United Kingdom, and internationally, working on the emerging field of ECM ageing. Here we report on a consultation at a joint meeting of ECMage and the Medical Research Council / Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, held in January 2023, in which delegates analysed the key questions and research opportunities in the field of ECM ageing. We examine fundamental biological questions, enabling technologies, systems of study and emerging in vitro and in silico models, alongside consideration of the broader challenges facing the field.
Assuntos
Envelhecimento , Matriz Extracelular , Animais , Humanos , Matriz Extracelular/metabolismo , Reino UnidoRESUMO
Programmed cell death (PCD) is fundamentally important for plant development, abiotic stress responses and immunity, but our understanding of its regulation remains fragmented. Building a stronger research community is required to accelerate progress in this area through knowledge exchange and constructive debate. In this Viewpoint, we aim to initiate a collective effort to integrate data across a diverse set of experimental models to facilitate characterisation of the fundamental mechanisms underlying plant PCD and ultimately aid the development of a new plant cell death classification system in the future. We also put forward our vision for the next decade of plant PCD research stemming from discussions held during the 31st New Phytologist workshop, 'The Life and Death Decisions of Plant Cells' that took place at University College Dublin in Ireland (14-15 June 2023). We convey the key areas of significant progress and possible future research directions identified, including resolving the spatiotemporal control of cell death, isolation of its molecular and genetic regulators, and harnessing technical advances for studying PCD events in plants. Further, we review the breadth of potential impacts of plant PCD research and highlight the promising new applications of findings from this dynamically evolving field.
Assuntos
Apoptose , Pesquisa , Plantas , Células Vegetais/fisiologiaRESUMO
Polycyclic aromatic hydrocarbons (PAHs), prominent carcinogens formed during food processing, pose health risks through long-term consumption. This study focuses on 16 priority PAHs in the European Union, investigating their formation during pyrolysis. Glucose, amino acids and fatty acids are important food nutrients. To further explore whether these nutrients in food form PAHs during heating, a single chemical model method was used to heat these nutrients respectively, and GC-MS/MS was used to identify and quantify the obtained components. Glucose is the most basic nutrient in food, so the influence of water, pH, temperature and other factors on the formation of PAHs was studied in the glucose model. At the same time, the models of amino acids and fatty acids were used to assist in improving the entire nutrient research system. According to our results, some previously reported mechanisms of PAHs formation by fatty acids heating were confirmed. In addition, glucose and amino acids could also produce many PAHs after heating, and some conclusions were improved by comparing the intermediates of PAHs from three types of nutrients.
Assuntos
Aminoácidos , Hidrocarbonetos Policíclicos Aromáticos , Ácidos Graxos , Glucose , Modelos Químicos , Espectrometria de Massas em Tandem , NutrientesRESUMO
The authors designed an integrated type 2 diabetes (T2D) curricula to model real-world complexity for high school biology and health students, highlighting interactions between genetic, biologic, environmental, and social factors, and modeling prevention and intervention activities. We evaluated the curriculum with two samples of students (888 historical comparison [no exposure] and 2,122 intervention students [received the T2D curricula]). Students completed pre-post assessments that were analyzed for knowledge gains and changes in self-efficacy to engage in healthy behaviors. Correct posttest answers in the intervention group increased by 24% versus 1% (biology) and 3% (health) of comparison students (p < .001); mean (sd) self-efficacy scores increased for biology [3.2 (25.2)] and health [1.5 (7.2), both p < .0001)]. COVID-19 prompted mandatory online teaching starting in March 2020 resulting in more health (65%) than biology students (47%, p < .001) doing the curriculum in virtual/hybrid classrooms, yet posttest knowledge gains were similar for these students learning in class or online (p = .47). Students' "take-home" messages mentioned the importance of prevention (64%), physiological mechanisms for developing T2D (54%), and environmental factors (17%). The curricula successfully delivered cross-disciplinary content without placing undue burden on teachers to create and sustain integrated learning systems.
RESUMO
The Journal of Comparative Physiology A, also known as JCPA, was founded by Karl von Frisch and Alfred Kühn in 1924, then under its German title Zeitschrift für vergleichende Physiologie. During the 100 years of its history, it became the leading international journal in comparative physiology and its daughter discipline, neuroethology. As such, it had a major impact on the development of these disciplines. In celebration of this achievement and the nearly 10,000 articles that appeared during the last 100 years, this Centennial Issue is published. Its authors reflect on the history of JCPA and the early pioneers, including women scientists, of comparative physiology; share the impact that the Journal had on their careers; discuss the benefit of the enormous taxonomic diversity of model systems used in studies published in JCPA; contrast this philosophy with the strategy of a limited number of standard biomedical model systems; review popular and trending research topics covered in JCPA; and, by interrogating the past, take a peek into the future of neuroethology.
RESUMO
With the emergence of widespread antibiotic resistance, phages are an appealing alternative to antibiotics in the fight against multidrug-resistant bacteria. Over the past few years, many phages have been isolated from various environments to treat bacterial pathogens. While isolating novel phages for treatment has had some success for compassionate use, developing novel phages into a general therapeutic will require considerable time and financial resource investments. These investments may be less significant for well-established phage model systems. The knowledge acquired from decades of research on their structure, life cycle, and evolution ensures safe application and efficient handling. However, one major downside of the established phage model systems is their inability to infect pathogenic bacteria. This problem is not insurmountable; phage host range can be extended through genetic engineering or evolution experiments. In the future, breeding model phages to infect pathogens could provide a new avenue to develop phage therapeutic agents.
RESUMO
Batrachochytrium dendrobatidis (Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world. Bd belongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids, Bd develops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to study Bd cell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system for Bd. We used electroporation to deliver exogenous DNA into Bd cells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of the Bd life cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms of Bd pathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.
Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Quitridiomicetos/genética , Anuros , Anfíbios/microbiologia , Micoses/microbiologia , Transformação GenéticaRESUMO
BACKGROUND: To elucidate the sociodemographic and study factors involved in enrollment in the Traumatic Brain Injury Model System (TBIMS) database, this study examined the effect of a variety of variables on enrollment at a local TBIMS center. METHODS: A sample of 654 individuals from the local TBIMS center was studied examining enrollment by age, gender, race, ethnicity, homelessness status at date of injury, history of homelessness, health insurance status, presence of social support, primary language, consenting in hospital or after discharge, and the need for an interpreter. Binary logistic regression was conducted to identify variables that predict center-based enrollment into TBIMS. RESULTS: Results demonstrated that older age was associated with decreasing enrollment (OR = 0.99, p = 0.01), needing an interpreter made enrollment less likely (OR = 0.33, p < 0.01), being primarily Spanish speaking predicted enrollment (OR = 3.20, p = 0.02), Hispanic ethnicity predicted enrollment (OR = 7.31, p = 0.03), and approaching individuals in the hospital predicted enrollment (OR = 6.94, p < 0.01). Here, OR denotes the odds ratio estimate from a logistic regression model and P denotes the corresponding p-value. CONCLUSIONS: These results can be useful in driving enrollment strategies at this center for other similar TBI research, and to contribute a representative TBI sample to the national database.
Assuntos
Lesões Encefálicas Traumáticas , Humanos , Cidade de Nova Iorque/epidemiologia , Lesões Encefálicas Traumáticas/epidemiologia , EtnicidadeRESUMO
In previous studies, the artemisinin derivatives artemisone, its pro-drug artemiside and the bumped-kinase inhibitor BKI-1748 were effective against T. gondii via different modes of action. This suggests that they may act synergistically resulting in improved efficacies in vitro and in vivo. To test this hypothesis, the compounds were applied alone and in combination to T. gondii infected human fibroblast host cells in order to determine their inhibition constants and effects on cellular ultrastructure. In addition, the efficacy of either single- or combined treatments were assessed in an acute TgShSp1-oocyst infection model based on CD1 outbred mice. Whereas the IC50 of the compounds in combination (42 nM) was close to the IC50 of BKI-1748 alone (46 nM) and half of the IC50 of artemisone alone (92 nM), the IC90 of the combination was half of the values found with the single compounds (138 nM vs. ca. 270 nM). Another indication for synergistic effects in vitro were distinct alterations of the cellular ultrastructure of tachyzoites observed in combination, but not with the single compounds. These promising results could not be reproduced in vivo. There was no decrease in number of T. gondii positive brains by either treatment. However, the levels of infection in these brains, i. e. the number of tachyzoites, was significantly decreased upon BKI-1748 treatment alone, and the combination with artemiside did not produce any further decrease. The treatment with artemiside alone had no significant effects. A vertical transmission model could not be established since artemiside strongly interfered with pregnancy and caused abortion. These results show that is difficult to extrapolate from promising in vitro results to the situation in vivo.