Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125227

RESUMO

In response to the phenomenon of interlayer transport channel swelling caused by the hydration of oxygen-containing functional groups on the GO membrane surface, a moderate heat treatment method was employed to controllably reduce the graphene oxide (GO) membrane and prepare a reduced GO composite nanofiltration membrane (mixed cellulose membrane (MCE)/ethylenediamine (EDA)/reduced GO-X (RGO-X)). The associations of different heat treatment temperatures with the hydrophilicity, interlayer structure, permeability and dye/salt rejection properties of GO membranes were systematically explored. The results indicated that the oxygen-containing groups of the GO membrane were partially eliminated after heat treatment, and the hydrophilicity was weakened. This effectively weakened the hydration between the GO membrane and the water molecules and inhibited the swelling of the oxidized graphene membrane. In the dye desalination test, the MCE/EDA/RGO membrane exhibited an ultra-high rejection rate of over 97% for methylene blue (MB) dye molecules. In addition, heat treatment increased the structural defects of the GO membrane and promoted the fast passage of water molecules via the membrane. In pure water flux testing, the water flux of the membrane remained above 46.58 Lm-2h-1bar-1, while the salt rejection rate was relatively low.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA