Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(41): 48569-48581, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34636230

RESUMO

Porphyrins and their derivatives are a unique class of multifunctional and modifiable π-conjugated heterocyclic organic molecules, which have been widely applied in the fields of optoelectronic devices and catalysis. However, the application of porphyrins in polymer electrolytes for all-solid-state lithium-ion batteries (ASSLIBs) has rarely been reported. Herein, porphyrin molecules modified by polyether chains are used for composite solid-state polymer electrolytes (CSPEs) for the first time. The introduction of a modified porphyrin in an electrolyte can not only promote the electrochemical properties by constructing ordered ion channels via the intermolecular interaction between π-conjugated heterocyclic porphyrins, but also significantly improve the mechanical strength and interface contact between the electrolyte membrane and the lithium metal anode. Consequently, the all-solid-state batteries assembled by the modified porphyrin composite polymer electrolyte, LiFePO4 cathodes, and Li anodes deliver a higher discharge capacity of 158.2 mA h g-1 at 60 °C, 0.2 C, which remains at 153.6 mA h g-1 after 120 cycles with an average coulombic efficiency of ∼99.60%. Furthermore, the flexible porphyrin-based composite polymer electrolyte can also enable a Li || LiCoO2 battery to exhibit a maximum discharge capacity of 108.6 mA h g-1 at 60 °C, 0.1 C with an active material loading of 2-3 mg cm-2, which is unable to realize for the corresponding batteries with a pure PEO-based polymer electrolyte. This work not only broadens the application scope of porphyrins, but also proposes a novel method to fabricate CSPEs with improved electrochemical and mechanical properties, which may shed new light on the development of CSPEs for next-generation high-energy-density lithium-ion batteries.

2.
Angew Chem Int Ed Engl ; 56(9): 2492-2496, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28112474

RESUMO

A pyrrole-cleaving modification to transform boron(III) meso-triphenylsubporphyrin into boron(III) meso-triphenylsubchlorophin has been developed. Boron(III) subchlorophins thus synthesized show absorption and fluorescence spectra that are roughly similar to those of boron(III) subchlorins, but B-methoxy boron(III) subchlorophin showed considerably intensified fluorescence and a small Stokes shift. Peripheral modification reactions of B-phenyl boron(III) subchlorophin such as regioselective nitration with Cu(NO3 )2 ⋅3 H2 O, ipso-substitution reactions of boron(III) α-nitrosubchlorophin with CsF and CsCl, and Pd-catalyzed cross-coupling reactions of boron(III) α-chlorosubchlorophin with arylacetylenes, have been also explored to tune the optical properties of subchlorophins.

3.
Chemistry ; 22(5): 1608-13, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26603672

RESUMO

This work describes the design of a modified porphyrin that bears four furan rings linked by 1,2-bis-(2-aminoethoxy)ethane spacers. This unit is a well-suited scaffold for a Diels-Alder reaction with commercial reduced-graphene oxide, which is also described in this paper. A new hybrid material is obtained, thanks to efficient grafting under microwave irradiation, and fully characterized in terms of structure (UV, TGA, Raman) and morphology (HR-TEM and AFM). Potential applications in photo- and sonodynamic therapy are envisaged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA