Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
Comput Struct Biotechnol J ; 23: 2995-3018, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39135887

RESUMO

The 4,6-substituted-1,3,5-triazin-2(1H)-ones are promising inhibitors of human DNA topoisomerase IIα. To further develop this chemical class targeting the enzyme´s ATP binding site, the triazin-2(1H)-one substitution position 6 was optimized. Inspired by binding of preclinical substituted 9H-purine derivative, bicyclic substituents were incorporated at position 6 and the utility of this modification was validated by a combination of molecular simulations, dynamic pharmacophores, and free energy calculations. Considering also predictions of Deepfrag, a software developed for structure-based lead optimization based on deep learning, compounds with both bicyclic and monocyclic substitutions were synthesized and investigated for their inhibitory activity. The SAR data showed that the bicyclic substituted compounds exhibited good inhibition of topo IIα, comparable to their mono-substituted counterparts. Further evaluation on a panel of human protein kinases showed selectivity for the inhibition of topo IIα. Mechanistic studies indicated that the compounds acted predominantly as catalytic inhibitors, with some exhibiting topo IIα poison effects at higher concentrations. Integration of STD NMR experiments and molecular simulations, provided insights into the binding model and highlighted the importance of the Asn120 interaction and hydrophobic interactions with substituents at positions 4 and 6. In addition, NCI-60 screening demonstrated cytotoxicity of the compounds with bicyclic substituents and identified sensitive human cancer cell lines, underlining the translational relevance of our findings for further preclinical development of this class of compounds. The study highlights the synergy between simulation and AI-based approaches in efficiently guiding molecular design for drug optimization, which has implications for further preclinical development of this class of compounds.

2.
J Comput Aided Mol Des ; 38(1): 31, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177727

RESUMO

Human Hippo signaling pathway is an evolutionarily conserved regulator network that controls organ development and has been implicated in various cancers. Transcriptional enhanced associate domain-4 (TEAD4) is the final nuclear effector of Hippo pathway, which is activated by Yes-associated protein (YAP) through binding to two separated YAP regions of α1-helix and Ω-loop. Previous efforts have all been addressed on deriving peptide inhibitors from the YAP to target TEAD4. Instead, we herein attempted to rationally design a so-called 'YAP helixα1-trap' based on the TEAD4 to target YAP by using dynamics simulation and energetics analysis as well as experimental assays at molecular and cellular levels. The trap represents a native double-stranded helical hairpin covering a specific YAP-binding site on TEAD4 surface, which is expected to form a three-helix bundle with the α1-helical region of YAP, thus competitively disrupting TEAD4-YAP interaction. The hairpin was further stapled by a disulfide bridge across its two helical arms. Circular dichroism characterized that the stapling can effectively constrain the trap into a native-like structured conformation in free state, thus largely minimizing the entropy penalty upon its binding to YAP. Affinity assays revealed that the stapling can considerably improve the trap binding potency to YAP α1-helix by up to 8.5-fold at molecular level, which also exhibited a good tumor-suppressing effect at cellular level if fused with TAT cell permeation sequence. In this respect, it is considered that the YAP helixα1-trap-mediated blockade of Hippo pathway may be a new and promising therapeutic strategy against cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos , Proteínas de Ligação a DNA , Simulação de Dinâmica Molecular , Proteínas Musculares , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Proteínas de Sinalização YAP , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Humanos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dissulfetos/química , Dissulfetos/farmacologia , Ligação Proteica , Sítios de Ligação , Linhagem Celular Tumoral , Desenho Assistido por Computador , Desenho de Fármacos
3.
Exploration (Beijing) ; 4(4): 20230122, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39175891

RESUMO

In recent decades, the demand for clean and renewable energy has grown increasingly urgent due to the irreversible alteration of the global climate change. As a result, organic solar cells (OSCs) have emerged as a promising alternative to address this issue. In this review, we summarize the recent progress in the molecular design strategies of benzodithiophene (BDT)-based polymer and small molecule donor materials since their birth, focusing on the development of main-chain engineering, side-chain engineering and other unique molecular design paths. Up to now, the state-of-the-art power conversion efficiency (PCE) of binary OSCs prepared by BDT-based donor materials has approached 20%. This work discusses the potential relationship between the molecular changes of donor materials and photoelectric performance in corresponding OSC devices in detail, thereby presenting a rational molecular design guidance for stable and efficient donor materials in future.

4.
J Biomed Inform ; 157: 104712, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182631

RESUMO

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.

5.
J Agric Food Chem ; 72(32): 17802-17812, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39092526

RESUMO

Succinate dehydrogenase (SDH) has been considered an ideal target for discovering fungicides. To develop novel SDH inhibitors, in this work, 31 novel benzothiazol-2-ylthiophenylpyrazole-4-carboxamides were designed and synthesized using active fragment exchange and a link approach as promising SDH inhibitors. The findings from the tests on antifungal activity indicated that most of the synthesized compounds displayed remarkable inhibition against the fungi tested. Compound Ig N-(2-(((5-chlorobenzo[d]thiazol-2-yl)thio)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-yrazole-4-carboxamide, with EC50 values against four kinds of fungi tested below 10 µg/mL and against Cercospora arachidicola even below 2 µg/mL, showed superior antifungal activity than that of commercial fungicide thifluzamide, and specifically compounds Ig and Im were found to show preventative potency of 90.6% and 81.3% against Rhizoctonia solani Kühn, respectively, similar to the positive fungicide thifluzamide. The molecular simulation studies suggested that hydrophobic interactions were the main driving forces between ligands and SDH. Encouragingly, we found that compound Ig can effectively promote the wheat seedlings and the growth of Arabidopsis thaliana. Our further studies indicated that compound Ig could stimulate nitrate reductase activity in planta and increase the biomass of plants.


Assuntos
Inibidores Enzimáticos , Fungicidas Industriais , Pirazóis , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Benzotiazóis/química , Benzotiazóis/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Ascomicetos/efeitos dos fármacos , Ascomicetos/enzimologia , Estrutura Molecular
6.
Artigo em Inglês | MEDLINE | ID: mdl-39191511

RESUMO

Colorless polyimides (CPIs) are widely used as high-performance materials in flexible electronic devices. From a molecular design standpoint, the industry continues to encounter challenges in developing CPIs with desired attributes, including exceptional optical transparency, excellent thermal stability, and enhanced mechanical strength. This study presents and validates a method for controlling 2-substituents, with a specific emphasis on examining how these substituents affect the thermal, mechanical, optical, and dielectric characteristics of CPIs. The presence of two CF3 groups on the same side of the diamine structure ensured the transmittance of the film. The charge transfer effect and the molecular distance are dynamically regulated by changing the 2-substituent (-OCH3/-CH3/H/F). The polyimide exhibited a well-maintained equilibrium between transparency and thermal stability, with a T500nm value ranging from 86.2 to 89.6% in the visible region, and a glass transition temperature (Tg) ranging from 358.6 to 376.0 °C. Additionally, the 6FDA-2-MTFMB compound, when combined with methyl, excels as a protective layer and base material, exhibiting excellent performance in various aspects. It has been verified as an appropriate option for flexible photodetectors and wearable piezoresistive sensors. In summary, this systematic investigation will provide a comprehensive and demonstrative methodology for developing CPIs that are capable of adapting to flexible electronic devices.

7.
Chem Biodivers ; : e202401767, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185921

RESUMO

Insect transient receptor potential vanilloid (TRPV) channels are critical targets for insecticides. In this study, various scaffold-hopping strategies were employed in the rational design of pyridylhydrazono derivatives as potential insect TRPV channels modulators. Insecticidal bioassay demonstrated that the initial target compounds exhibited lower insecticidal activity compared to pymetrozine, with the optimal compound B3 exhibiting a mortality rate of 53.3% against Aphis craccivora at 400 mg·L-1. Conformation analysis indicated that the high energy barrier required for the transition from the lowest-energy conformation to the active conformation may be a key factor contributing to the reduced insecticidal activities of the target compounds. Further structural optimizations aimed at reducing this energy barrier through binding mode-based conformation regulation led to the identification of optimal target 4-(3'-pyridylhydrazono)pyrazol-5-one derivatives C1 and C2. These compounds exhibited reduced transition energy barriers and improved insecticidal activity, with moderate mortality rate of 66.3% and 75.7% against A. craccivora at 400 mg·L-1, respectively. These findings provide valuable insights for future research on the discovery of insect TRPV modulators and have significant implications for the development of more effective agricultural insecticides.

8.
Adv Sci (Weinh) ; : e2405303, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135539

RESUMO

The ternary strategy proves effective for breakthroughs in organic photovoltaics (OPVs). Elevating three photovoltaic parameters synergistically, especially the proportion-insensitive third component, is crucial for efficient ternary devices. This work introduces a molecular design strategy by comprehensively analyzing asymmetric end groups, side-chain engineering, and halogenation to explore the outstanding optoelectronic properties of the proportion-insensitive third component in efficient ternary systems. Three asymmetric non-fullerene acceptors (BTP-SA1, BTP-SA2, and BTP-SA3) are synthesized based on the Y6 framework and incorporated as the third component into the D18:Y6 binary system. BTP-SA3, featuring asymmetric terminal (difluoro-indone and dichloride-cyanoindone terminal), with branched alkyl side chains, exhibited high open-circuit voltage (VOC), balanced crystallinity and compatibility, achieving synergistic enhancements in VOC (0.862 V), short circuit-current density (JSC, 27.52 mA cm-2), fill fact (FF, 81.01%), and power convert efficiency (PCE, 19.19%). Device based on D18/Y6:BTP-SA3 (layer-by-layer processed) reached a high efficiency of 19.36%, demonstrating a high tolerance for BTP-SA3 (10-50%). This work provides novel insights into optimizing OPVs performances in multi-component systems and designing components with enhanced tolerance.

9.
Adv Mater ; : e2406474, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39054931

RESUMO

One-for-all phototheranostics based on a single molecule is recognized as a convenient approach for cancer treatment, whose efficacy relies on precise lesion localization through multimodal imaging, coupled with the efficient exertion of phototherapy. To unleash the full potential of phototheranostics, advancement in both phototheranostic agents and light delivery methods is essential. Herein, an integrated strategy combining a versatile molecule featuring aggregation-induced emission, namely tBuTTBD, with a modified optical fiber to realize comprehensive tumor diagnosis and "inside-out" irradiation in the orthotopic breast tumor, is proposed for the first time. Attributed to the intense donor-acceptor interaction, highly distorted conformation, abundant molecular rotors, and loose intermolecular packing upon aggregation, tBuTTBD can synchronously undergo second near-infrared (NIR-II) fluorescence emission, photothermal and photodynamic generation under laser irradiation, contributing to a trimodal NIR-II fluorescence-photoacoustic (PA)-photothermal imaging-guided phototherapy. The tumor treatment is further carried out following the insertion of a modified optical fiber, which is fabricated by splicing a flat-end fiber with an air-core fiber. This configuration aims to enable effective in situ phototherapy by maximizing energy utilization for therapeutic benefits. This work not only enriches the palette of NIR-II phototheranostic agents but also provides valuable insight for exploring an integrated phototheranostic protocol for practical cancer treatment.

10.
J Agric Food Chem ; 72(28): 15474-15486, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949855

RESUMO

Corn ear rot and fumonisin caused by Fusarium verticillioides pose a serious threat to food security. To find more highly active fungicidal and antitoxic candidates with structure diversity based on naturally occurring lead xanthatin, a series of novel spiropiperidinyl-α-methylene-γ-butyrolactones were rationally designed and synthesized. The in vitro bioassay results indicated that compound 7c showed broad-spectrum in vitro activity with EC50 values falling from 3.51 to 24.10 µg/mL against Rhizoctonia solani and Alternaria solani, which was more active than the positive controls xanthatin and oxathiapiprolin. In addition, compound 7c also showed good antitoxic efficacy against fumonisin with a 48% inhibition rate even at a concentration of 20 µg/mL. Fluorescence quenching and the molecular docking validated both 7c and oxathiapiprolin targeting at FvoshC. RNA sequencing analysis discovered that FUM gene cluster and protein processing in endoplasmic reticulum were downregulated. Our studies have discovered spiropiperidinyl-α-methylene-γ-butyrolactone as a novel FvoshC target-based scaffold for fungicide lead with antitoxin activity.


Assuntos
Alternaria , Fungicidas Industriais , Fusarium , Simulação de Acoplamento Molecular , Rhizoctonia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Alternaria/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/química , Descoberta de Drogas , Zea mays/química , Zea mays/microbiologia , Estrutura Molecular
11.
Angew Chem Int Ed Engl ; : e202410568, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083345

RESUMO

Affordable and safe aqueous proton batteries (APBs) with unique "Grotthuss mechanism," are very significant for advancing carbon neutrality initiatives. While organic polymers offer a robust and adaptable framework that is well-suited for APB electrodes, the limited proton-storage redox capacity has constrained their broader application. Herein, a ladder-type polymer (PNMZ) has been designed via a covalent cycloconjugation conformational strategy that exhibits optimized electronic structure and fast intra-chain charge transport within the high-aromaticity polymeric skeleton. As a result, the polymer exhibits exceptional proton-storage redox kinetics, which are evidenced by in-operando monitoring techniques and theoretical calculations. It achieves a remarkable proton-storage capacity of 189 mAh g-1 at 2 A g-1 and excellent long-term cycling stability, with approximately 97.8% capacity retention over 10,000 cycles. Finally, a high-performance all-polymer APB device has been successfully constructed with a desirable capacity retention of 99.7% after 6,000 cycles and high energy density of 56.3 Wh kg-1.

12.
Anticancer Res ; 44(8): 3587-3591, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060048

RESUMO

BACKGROUND/AIM: Acetyl glucose adducts (UTX-114, -115, and -116) were prepared from gefitinib, and their characteristics (e.g., anticancer activity, structural property) were analyzed. MATERIALS AND METHODS: Cytotoxicity and radiosensitizing properties of the UTX-114 family were examined using A431 cells. Supramolecular associations between the UTX-114 family compounds and the tyrosine kinase domain of epidermal growth factor receptor (EGFR-tyk) were also examined. The interactive analyses of the UTX-114 family compounds with EGFR-tyk were performed using docking simulation technique. RESULTS: The UTX-114 family showed a similar cytotoxicity as gefitinib, yielding IC50 values of 31.2 µM (gefitinib), 34.3 µM (UTX-114), 36.8 µM (UTX-115), and 39.4 µM (UTX-116). The EGFR-tyk inhibition ratios (IR) of UTX-114, -115, and -116 to gefitinib were 1.515, 0.983, and 0.551, respectively. The EGFR-tyk inhibitory activity of UTX-114 was higher than that of gefitinib. UTX-114 also showed the highest radiosensitizing activity among the tested compounds. UTX-114 expressed 1841 conformers (-8.989~15.718 kcal/mol) with the solvation free energy (dGW) of UTX-114 decreasing with increasing conformational energy, ranging between -354.955~ -260.815 kJ/mol. Interactive energies of gefitinib, UTX-114, -115, and -116 with EGFR-tyk were -123.640, -144.053, -120.830, and -124.658 kcal/mol, respectively. CONCLUSION: UTX-114 yielded the lowest interaction energy with EGFR-tyk among tested compounds. Given the association behavior between UTX-114 and EGFR-tyk, along with its other observed properties, UTX-114 appears to be a viable therapeutic possibility.


Assuntos
Receptores ErbB , Gefitinibe , Simulação de Acoplamento Molecular , Gefitinibe/farmacologia , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Glicosilação , Inibidores de Proteínas Quinases/farmacologia , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química
13.
J Agric Food Chem ; 72(31): 17125-17137, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39047218

RESUMO

Weed resistance is a critical issue in crop production. Among the known herbicides, 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are crucial for addressing weed resistance. HPPD inhibitors constitute a pivotal aspect of contemporary crop protection strategies. The advantages of these herbicides are their broad weed spectrum, flexible application, and excellent compatibility with other herbicides. They also exhibit satisfactory crop selectivity and low toxicity and are environmentally friendly. An increasing number of new HPPD inhibitors have been designed by combining computer-aided drug design with conventional design approaches. Herein, the molecular design and structural features of innovative HPPD inhibitors are reviewed to guide the development of new HPPD inhibitors possessing an enhanced biological efficacy.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Desenho de Fármacos , Inibidores Enzimáticos , Herbicidas , Plantas Daninhas , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Herbicidas/química , Herbicidas/farmacologia , Herbicidas/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inibidores , Controle de Plantas Daninhas , Resistência a Herbicidas , Relação Estrutura-Atividade , Estrutura Molecular
14.
Methods Mol Biol ; 2780: 345-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987477

RESUMO

Chemical protein knockdown technology using proteolysis-targeting chimeras (PROTACs) to hijack the endogenous ubiquitin-proteasome system is a powerful strategy to degrade disease-related proteins. This chapter describes in silico design of a hematopoietic prostaglandin D synthase (H-PGDS) degrader, PROTAC(H-PGDS), using a docking simulation of the ternary complex of H-PGDS/PROTAC/E3 ligase as well as the synthesis of the designed PROTAC(H-PGDS)s and evaluation of their H-PGDS degradation activity.


Assuntos
Oxirredutases Intramoleculares , Lipocalinas , Simulação de Acoplamento Molecular , Proteólise , Oxirredutases Intramoleculares/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/antagonistas & inibidores , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Simulação por Computador , Desenho de Fármacos , Ubiquitina-Proteína Ligases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/química
15.
aBIOTECH ; 5(2): 262-277, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974863

RESUMO

Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.

16.
Angew Chem Int Ed Engl ; : e202409217, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989537

RESUMO

Cytochrome P450 2D6 (CYP2D6) is a key enzyme that mediates the metabolism of various drugs and endogenous substances in humans. However, its biological role in drug-drug interactions especially mechanism-based inactivation (MBI), and various diseases remains poorly understood, owing to the lack of molecular tools suitable for selectively monitoring CYP2D6 in complex biological systems. Herein, using a tailored molecular strategy, we developed a fluorescent probe BDPM for CYP2D6. BDPM exhibits excellent specificity and imaging capability for CYP2D6, making it suitable for the real-time monitoring of endogenous CYP2D6 activity in living bio-samples. Therefore, our tailored strategy proved useful for constructing the highly selective and enzyme-activated fluorescent probes. BDPM as a molecular tool to explore the critical roles of CYP2D6 in the pathogenesis of diseases, high-throughput screening of inhibitors and intensive investigation of CYP2D6-induced MBI in natural systems.

17.
Adv Mater ; : e2402681, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077938

RESUMO

Due to the unique "Grotthus mechanism", aqueous proton batteries (APBs) are promising energy devices with intrinsic safety and sustainability. Although polymers with tunable molecular structures are ideal electrode materials, their unsatisfactory proton-storage redox behaviors hinder the practical application in APB devices. Herein, a novel planar phenazine (PPHZ) polymer with a robust and extended imine-rich skeleton is synthesized and used for APB application for the first time. The long-range planar configuration achieves ordered molecular stacking and reduced conformational disorder, while the high conjugation with strong π-electron delocalization optimizes energy bandgap and electronic properties, enabling the polymer with low proton diffusion barriers, high redox activity, and superior electron affinity. As such, the PPHZ polymer as an electrode material exhibits fast, stable, and unrivaled proton-storage redox behaviors with a large capacity of 273.3 mAh g-1 at 0.5 A g-1 (1 C) in 1 M H2SO4 electrolyte, which is the highest value among proton-inserted electrodes in aqueous acidic electrolytes. Dynamic in situ techniques confirm the high redox reversibility upon proton uptake/removal, and the corresponding protonation pathways are elucidated by theoretical calculations. Moreover, a pouch-type APB cell using PPHZ electrode exhibits an ultralong lifespan over 30 000 cycles, further verifying its promising application prospect.

18.
Ecotoxicol Environ Saf ; 282: 116759, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029220

RESUMO

The excessive application and loss of pesticides poses a great risk to the ecosystem, and the environmental safety assessment of pesticides is time-consuming and expensive using traditional animal toxicity tests. In this work, a pesticide acute toxicity dataset was created for silkworm integrating extensive experiments and various common pesticide formulations considering the sensitivity of silkworm to adverse environment, its economic value in China, and a gap in machine learning (ML) research on the toxicity prediction of this species, which addressed the previous limitation of only being able to predict toxicity classification without specific toxicity values. A new comprehensive voting model (CVR) was developed based on ML, combined with three regression algorithms, namely, Bayesian Ridge (BR), K Neighbors Regressor (KNN), Random Forest Regressor (RF) to accurately calculate lethal concentration 50 % (LC50). Three conformal models were successfully constructed, marking the first combination of conformal models with confidence intervals to predict silkworm toxicity. Further, the mechanism by analyzing structural alerts was summarized, and identified 25 warning structures, 24 positive compounds and 14 negative compounds. Importantly, a novel comprehensive prediction system was constructed that can provide LC50 and confidence intervals, structural alerts analysis, lipid-water partition coefficient (LogP) and similarity analysis, which can comprehensively evaluate the ecological toxicity risk of substances to make up for the incomplete toxicity data of new pesticides. The validity and generalization of the CVR model were verified by an external validation set. In addition, five new, low-toxic and green pesticide alternatives were designed through 50,000 cycles. Moreover, our software and ST Profiler can provide low-cost information access to accelerate environmental risk assessment, which can predict not only a single chemical, but also batches of chemicals, simply by inputting the SMILES / CAS / (Chinese / English) name of chemicals.


Assuntos
Bombyx , Aprendizado de Máquina , Praguicidas , Testes de Toxicidade Aguda , Animais , Bombyx/efeitos dos fármacos , Praguicidas/toxicidade , Testes de Toxicidade Aguda/métodos , Dose Letal Mediana , Teorema de Bayes , Medição de Risco/métodos , Simulação por Computador , Poluentes Ambientais/toxicidade , China , Algoritmos
19.
J Hazard Mater ; 477: 135371, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39084014

RESUMO

Salicylic esters (SEs), the widely used ultraviolet (UV) absorbers in sunscreen products, have been found to have health risks such as skin sensitization and estrogenic effects. This study aims to design SE substitutes that maintain high UV absorbance while reducing estrogenicity. Using molecular docking and Gaussian09 software for initial assessments and further application of a combination of two-dimensional and three-dimensional quantitative structure-activity relationships (2D-QSAR and 3D-QSAR, respectively) models, we designed 73 substitutes. The best-performing molecules, ethylhexyl salicylate (EHS)-5 and EHS-15, significantly reduced estrogenicity (44.54 % and 17.60 %, respectively) and enhanced UV absorbance (249.56 % and 46.94 %, respectively). Through screening for human health risks, we found that EHS-5 and EHS-15 were free from skin sensitivity and eye irritation and exhibited reduced skin permeability compared with EHS. Furthermore, the photolysis and synthetic pathways of EHS-5 and EHS-15 were deduced, demonstrating their good photodegradability and potential synthesizability. In addition, we analyzed the mechanisms underlying the changes in estrogenic effects and UV absorption properties. We identified covalent hydrogen bond basicity and acidity Propgen value for atomic molecular properties and the highest occupied molecular orbital eigenvalue as the main factors affecting the estrogenic effect and UV absorbance of SEs, respectively. This study focuses on the design and screening of SEs, exhibiting enhanced functionality, reduced health risks, and synthetic feasibility.


Assuntos
Estrogênios , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Salicilatos , Protetores Solares , Protetores Solares/química , Protetores Solares/toxicidade , Salicilatos/química , Salicilatos/toxicidade , Estrogênios/química , Estrogênios/toxicidade , Humanos , Raios Ultravioleta , Fotólise , Animais , Pele/efeitos dos fármacos , Pele/efeitos da radiação
20.
Eur J Nucl Med Mol Imaging ; 51(10): 3040-3054, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38900308

RESUMO

To meet the growing demand for intraoperative molecular imaging, the development of compatible imaging agents plays a crucial role. Given the unique requirements of surgical applications compared to diagnostics and therapy, maximizing translational potential necessitates distinctive imaging agent designs. For effective surgical guidance, exogenous signatures are essential and are achievable through a diverse range of imaging labels such as (radio)isotopes, fluorescent dyes, or combinations thereof. To achieve optimal in vivo utility a balanced molecular design of the tracer as a whole is required, which ensures a harmonious effect of the imaging label with the affinity and specificity (e.g., pharmacokinetics) of a pharmacophore/targeting moiety. This review outlines common design strategies and the effects of refinements in the molecular imaging agent design on the agent's pharmacological profile. This includes the optimization of affinity, pharmacokinetics (including serum binding and target mediated background), biological clearance route, the achievable signal intensity, and the effect of dosing hereon.


Assuntos
Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Imagem Molecular/métodos , Animais , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA