Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063220

RESUMO

Reproductive toxicity poses significant risks to fertility and progeny health, making its identification in pharmaceutical compounds crucial. In this study, we conducted a comprehensive in silico investigation of reproductive toxic molecules, identifying three distinct categories represented by Dimethylhydantoin, Phenol, and Dicyclohexyl phthalate. Our analysis included physicochemical properties, target prediction, and KEGG and GO pathway analyses, revealing diverse and complex mechanisms of toxicity. Given the complexity of these mechanisms, traditional molecule-target research approaches proved insufficient. Support Vector Machines (SVMs) combined with molecular descriptors achieved an accuracy of 0.85 in the test dataset, while our custom deep learning model, integrating molecular SMILES and graphs, achieved an accuracy of 0.88 in the test dataset. These models effectively predicted reproductive toxicity, highlighting the potential of computational methods in pharmaceutical safety evaluation. Our study provides a robust framework for utilizing computational methods to enhance the safety evaluation of potential pharmaceutical compounds.


Assuntos
Reprodução , Máquina de Vetores de Suporte , Reprodução/efeitos dos fármacos , Humanos , Simulação por Computador , Biologia Computacional/métodos , Análise por Conglomerados , Ácidos Ftálicos/toxicidade , Animais
2.
SAR QSAR Environ Res ; 35(6): 505-530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39007781

RESUMO

Histone deacetylase 6 (HDAC6) is a promising drug target for the treatment of human diseases such as cancer, neurodegenerative diseases (in particular, Alzheimer's disease), and multiple sclerosis. Considerable attention is paid to the development of selective non-toxic HDAC6 inhibitors. To this end, we successfully form a set of 3854 compounds and proposed adequate regression QSAR models for HDAC6 inhibitors. The models have been developed using the PubChem, Klekota-Roth, 2D atom pair fingerprints, and RDkit descriptors and the gradient boosting, support vector machines, neural network, and k-nearest neighbours methods. The models are integrated into the developed HT_PREDICT application, which is freely available at https://htpredict.streamlit.app/. In vitro studies have confirmed the predictive ability of the proposed QSAR models integrated into the HT_PREDICT web application. In addition, the virtual screening performed with the HT_PREDICT web application allowed us to propose two promising inhibitors for further investigations.


Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Humanos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Redes Neurais de Computação , Máquina de Vetores de Suporte , Avaliação Pré-Clínica de Medicamentos
3.
J Adv Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844122

RESUMO

INTRODUCTION: With the escalating menace of organic compounds in environmental pollution imperiling the survival of aquatic organisms, the investigation of organic compound toxicity across diverse aquatic species assumes paramount significance for environmental protection. Understanding how different species respond to these compounds helps assess the potential ecological impact of pollution on aquatic ecosystems as a whole. Compared with traditional experimental methods, deep learning methods have higher accuracy in predicting aquatic toxicity, faster data processing speed and better generalization ability. OBJECTIVES: This article presents ATFPGT-multi, an advanced multi-task deep neural network prediction model for organic toxicity. METHODS: The model integrates molecular fingerprints and molecule graphs to characterize molecules, enabling the simultaneous prediction of acute toxicity for the same organic compound across four distinct fish species. Furthermore, to validate the advantages of multi-task learning, we independently construct prediction models, named ATFPGT-single, for each fish species. We employ cross-validation in our experiments to assess the performance and generalization ability of ATFPGT-multi. RESULTS: The experimental results indicate, first, that ATFPGT-multi outperforms ATFPGT-single on four fish datasets with AUC improvements of 9.8%, 4%, 4.8%, and 8.2%, respectively, demonstrating the superiority of multi-task learning over single-task learning. Furthermore, in comparison with previous algorithms, ATFPGT-multi outperforms comparative methods, emphasizing that our approach exhibits higher accuracy and reliability in predicting aquatic toxicity. Moreover, ATFPGT-multi utilizes attention scores to identify molecular fragments associated with fish toxicity in organic molecules, as demonstrated by two organic molecule examples in the main text, demonstrating the interpretability of ATFPGT-multi. CONCLUSION: In summary, ATFPGT-multi provides important support and reference for the further development of aquatic toxicity assessment. All of codes and datasets are freely available online at https://github.com/zhaoqi106/ATFPGT-multi.

4.
J Cheminform ; 16(1): 53, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741153

RESUMO

Molecular fingerprints are indispensable tools in cheminformatics. However, stereochemistry is generally not considered, which is problematic for large molecules which are almost all chiral. Herein we report MAP4C, a chiral version of our previously reported fingerprint MAP4, which lists MinHashes computed from character strings containing the SMILES of all pairs of circular substructures up to a diameter of four bonds and the shortest topological distance between their central atoms. MAP4C includes the Cahn-Ingold-Prelog (CIP) annotation (R, S, r or s) whenever the chiral atom is the center of a circular substructure, a question mark for undefined stereocenters, and double bond cis-trans information if specified. MAP4C performs slightly better than the achiral MAP4, ECFP and AP fingerprints in non-stereoselective virtual screening benchmarks. Furthermore, MAP4C distinguishes between stereoisomers in chiral molecules from small molecule drugs to large natural products and peptides comprising thousands of diastereomers, with a degree of distinction smaller than between structural isomers and proportional to the number of chirality changes. Due to its excellent performance across diverse molecular classes and its ability to handle stereochemistry, MAP4C is recommended as a generally applicable chiral molecular fingerprint. SCIENTIFIC CONTRIBUTION: The ability of our chiral fingerprint MAP4C to handle stereoisomers from small molecules to large natural products and peptides is unprecedented and opens the way for cheminformatics to include stereochemistry as an important molecular parameter across all fields of molecular design.

5.
J Hazard Mater ; 469: 133989, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461660

RESUMO

Drinking water disinfection can result in the formation disinfection byproducts (DBPs, > 700 have been identified to date), many of them are reportedly cytotoxic, genotoxic, or developmentally toxic. Analyzing the toxicity levels of these contaminants experimentally is challenging, however, a predictive model could rapidly and effectively assess their toxicity. In this study, machine learning models were developed to predict DBP cytotoxicity based on their chemical information and exposure experiments. The Random Forest model achieved the best performance (coefficient of determination of 0.62 and root mean square error of 0.63) among all the algorithms screened. Also, the results of a probabilistic model demonstrated reliable model predictions. According to the model interpretation, halogen atoms are the most prominent features for DBP cytotoxicity compared to other chemical substructures. The presence of iodine and bromine is associated with increased cytotoxicity levels, while the presence of chlorine is linked to a reduction in cytotoxicity levels. Other factors including chemical substructures (CC, N, CN, and 6-member ring), cell line, and exposure duration can significantly affect the cytotoxicity of DBPs. The similarity calculation indicated that the model has a large applicability domain and can provide reliable predictions for DBPs with unknown cytotoxicity. Finally, this study showed the effectiveness of data augmentation in the scenario of data scarcity.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Cricetinae , Desinfecção , Desinfetantes/toxicidade , Desinfetantes/análise , Halogenação , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Halogênios , Cloro , Água Potável/análise , Células CHO
6.
Toxicology ; 502: 153736, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307192

RESUMO

Drug-induced liver injury (DILI) is one the rare adverse drug reaction (ADR) and multifactorial endpoints. Current preclinical animal models struggle to anticipate it, and in silico methods have emerged as a way with significant potential for doing so. In this study, a high-quality dataset of 1573 compounds was assembled. The 48 classification models, which depended on six different molecular fingerprints, were built via deep neural network (DNN) and seven machine learning algorithms. Comparing the results of the DNN and machine learning models, the optional performing model was found as the one developed based on the DNN with ECFP_6 as input, which achieved the area under the receiver operating characteristic curve (AUC) of 0.713, balanced accuracy (BA) of 0.680, and F1 of 0.753. In addition, we used the SHapley Additive exPlanations (SHAP) algorithm to interpret the models, identified the crucial structural fragments related to DILI risk, and selected the top ten substructures with the highest contribution rankings to serve as warning indicators for subsequent drug hepatotoxicity screening studies. The study demonstrates that the DNN models developed based on molecular fingerprints can be a trustworthy and efficient tool for determining the risk of DILI during the pre-development of novel medications.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Aprendizado Profundo , Animais , Algoritmos , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Aprendizado de Máquina , Redes Neurais de Computação
7.
Int J Biol Macromol ; 262(Pt 2): 130150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365157

RESUMO

Magnesium ions (Mg2+) are essential for the folding, functional expression, and structural stability of RNA molecules. However, predicting Mg2+-binding sites in RNA molecules based solely on RNA structures is still challenging. The molecular surface, characterized by a continuous shape with geometric and chemical properties, is important for RNA modelling and carries essential information for understanding the interactions between RNAs and Mg2+ ions. Here, we propose an approach named RNA-magnesium ion surface interaction fingerprinting (RMSIF), a geometric deep learning-based conceptual framework to predict magnesium ion binding sites in RNA structures. To evaluate the performance of RMSIF, we systematically enumerated decoy Mg2+ ions across a full-space grid within the range of 2 to 10 Å from the RNA molecule and made predictions accordingly. Visualization techniques were used to validate the prediction results and calculate success rates. Comparative assessments against state-of-the-art methods like MetalionRNA, MgNet, and Metal3DRNA revealed that RMSIF achieved superior success rates and accuracy in predicting Mg2+-binding sites. Additionally, in terms of the spatial distribution of Mg2+ ions within the RNA structures, a majority were situated in the deep grooves, while a minority occupied the shallow grooves. Collectively, the conceptual framework developed in this study holds promise for advancing insights into drug design, RNA co-transcriptional folding, and structure prediction.


Assuntos
Aprendizado Profundo , RNA , RNA/química , Magnésio/química , Sítios de Ligação , Íons/química
8.
J Cheminform ; 16(1): 13, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291477

RESUMO

Conventional machine learning (ML) and deep learning (DL) play a key role in the selectivity prediction of kinase inhibitors. A number of models based on available datasets can be used to predict the kinase profile of compounds, but there is still controversy about the advantages and disadvantages of ML and DL for such tasks. In this study, we constructed a comprehensive benchmark dataset of kinase inhibitors, involving in 141,086 unique compounds and 216,823 well-defined bioassay data points for 354 kinases. We then systematically compared the performance of 12 ML and DL methods on the kinase profiling prediction task. Extensive experimental results reveal that (1) Descriptor-based ML models generally slightly outperform fingerprint-based ML models in terms of predictive performance. RF as an ensemble learning approach displays the overall best predictive performance. (2) Single-task graph-based DL models are generally inferior to conventional descriptor- and fingerprint-based ML models, however, the corresponding multi-task models generally improves the average accuracy of kinase profile prediction. For example, the multi-task FP-GNN model outperforms the conventional descriptor- and fingerprint-based ML models with an average AUC of 0.807. (3) Fusion models based on voting and stacking methods can further improve the performance of the kinase profiling prediction task, specifically, RF::AtomPairs + FP2 + RDKitDes fusion model performs best with the highest average AUC value of 0.825 on the test sets. These findings provide useful information for guiding choices of the ML and DL methods for the kinase profiling prediction tasks. Finally, an online platform called KIPP ( https://kipp.idruglab.cn ) and python software are developed based on the best models to support the kinase profiling prediction, as well as various kinase inhibitor identification tasks including virtual screening, compound repositioning and target fishing.

9.
Biomolecules ; 14(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254672

RESUMO

Molecular recognition is fundamental in biology, underpinning intricate processes through specific protein-ligand interactions. This understanding is pivotal in drug discovery, yet traditional experimental methods face limitations in exploring the vast chemical space. Computational approaches, notably quantitative structure-activity/property relationship analysis, have gained prominence. Molecular fingerprints encode molecular structures and serve as property profiles, which are essential in drug discovery. While two-dimensional (2D) fingerprints are commonly used, three-dimensional (3D) structural interaction fingerprints offer enhanced structural features specific to target proteins. Machine learning models trained on interaction fingerprints enable precise binding prediction. Recent focus has shifted to structure-based predictive modeling, with machine-learning scoring functions excelling due to feature engineering guided by key interactions. Notably, 3D interaction fingerprints are gaining ground due to their robustness. Various structural interaction fingerprints have been developed and used in drug discovery, each with unique capabilities. This review recapitulates the developed structural interaction fingerprints and provides two case studies to illustrate the power of interaction fingerprint-driven machine learning. The first elucidates structure-activity relationships in ß2 adrenoceptor ligands, demonstrating the ability to differentiate agonists and antagonists. The second employs a retrosynthesis-based pre-trained molecular representation to predict protein-ligand dissociation rates, offering insights into binding kinetics. Despite remarkable progress, challenges persist in interpreting complex machine learning models built on 3D fingerprints, emphasizing the need for strategies to make predictions interpretable. Binding site plasticity and induced fit effects pose additional complexities. Interaction fingerprints are promising but require continued research to harness their full potential.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Ligantes , Sítios de Ligação , Relação Quantitativa Estrutura-Atividade
10.
Chem Biol Drug Des ; 103(1): e14427, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230776

RESUMO

Fragment-based drug design is an emerging technology in pharmaceutical research and development. One of the key aspects of this technology is the identification and quantitative characterization of molecular fragments. This study presents a strategy for identifying important molecular fragments based on molecular fingerprints and decision tree algorithms and verifies its feasibility in predicting protein-ligand binding affinity. Specifically, the three-dimensional (3D) structures of protein-ligand complexes are encoded using extended-connectivity fingerprints (ECFP), and three decision tree models, namely Random Forest, XGBoost, and LightGBM, are used to quantitatively characterize the feature importance, thereby extracting important molecular fragments with high reliability. Few-shot learning reveals that the extracted molecular fragments contribute significantly and consistently to the binding affinity even with a small sample size. Despite the absence of location and distance information for molecular fragments in ECFP, 3D visualization, in combination with the reverse ECFP process, shows that the majority of the extracted fragments are located at the binding interface of the protein and the ligand. This alignment with the distance constraints critical for binding affinity further supports the reliability of the strategy for identifying important molecular fragments.


Assuntos
Proteínas , Ligantes , Reprodutibilidade dos Testes , Proteínas/química , Ligação Proteica , Árvores de Decisões
11.
Comput Biol Med ; 168: 107762, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056212

RESUMO

Antibiotic resistance continues to be a growing concern for global health, accentuating the need for novel antibiotic discoveries. Traditional methodologies in this field have relied heavily on extensive experimental screening, which is often time-consuming and costly. Contrastly, computer-assisted drug screening offers rapid, cost-effective solutions. In this work, we propose FIAMol-AB, a deep learning model that combines graph neural networks, text convolutional networks and molecular fingerprint techniques. This method also combines an attention mechanism to fuse multiple forms of information within the model. The experiments show that FIAMol-AB may offer potential advantages in antibiotic discovery tasks over some existing methods. We conducted some analysis based on our model's results, which help highlight the potential significance of certain features in the model's predictive performance. Compared to different models, ours demonstrate promising results, indicating potential robustness and versatility. This suggests that by integrating multi-view information and attention mechanisms, FIAMol-AB might better learn complex molecular structures, potentially improving the precision and efficiency of antibiotic discovery. We hope our FIAMol-AB can be used as a useful method in the ongoing fight against antibiotic resistance.


Assuntos
Aprendizado Profundo , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Redes Neurais de Computação
12.
Methods ; 221: 18-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040204

RESUMO

Drug-induced liver injury (DILI) is a significant issue in drug development and clinical treatment due to its potential to cause liver dysfunction or damage, which, in severe cases, can lead to liver failure or even fatality. DILI has numerous pathogenic factors, many of which remain incompletely understood. Consequently, it is imperative to devise methodologies and tools for anticipatory assessment of DILI risk in the initial phases of drug development. In this study, we present DMFPGA, a novel deep learning predictive model designed to predict DILI. To provide a comprehensive description of molecular properties, we employ a multi-head graph attention mechanism to extract features from the molecular graphs, representing characteristics at the level of compound nodes. Additionally, we combine multiple fingerprints of molecules to capture features at the molecular level of compounds. The fusion of molecular fingerprints and graph features can more fully express the properties of compounds. Subsequently, we employ a fully connected neural network to classify compounds as either DILI-positive or DILI-negative. To rigorously evaluate DMFPGA's performance, we conduct a 5-fold cross-validation experiment. The obtained results demonstrate the superiority of our method over four existing state-of-the-art computational approaches, exhibiting an average AUC of 0.935 and an average ACC of 0.934. We believe that DMFPGA is helpful for early-stage DILI prediction and assessment in drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Modelos Químicos , Humanos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Desenvolvimento de Medicamentos , Aprendizado Profundo
13.
Water Res ; 247: 120794, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918199

RESUMO

Understanding the reactivities of chlorine towards micropollutants is crucial for assessing the fate of micropollutants in water chlorination. In this study, we integrated machine learning with kinetic modeling to predict the reaction kinetics between micropollutants and chlorine in deionized water and real surface water. We first established a framework to predict the apparent second-order rate constants for micropollutants with chlorine by combining Morgan molecular fingerprints with machine learning algorithms. The framework was tuned using Bayesian optimization and showed high prediction accuracy. It was validated through experiments and used to predict the unreported apparent second-order rate constants for 103 emerging micropollutants with chlorine. The framework also improved the understanding of the structure-dependence of micropollutants' reactivity with chlorine. We incorporated the predicted apparent second-order rate constants into the Kintecus software to establish a hybrid model to profile the time-dependent changes of micropollutant concentrations by chlorination. The hybrid model was validated by experiments conducted in real surface water in the presence of natural organic matter. The hybrid model could predict how much micropollutants were degraded by chlorination with varied chlorine contact times and/or initial chlorine dosages. This study advances fundamental understanding of the reaction kinetics between chlorine and emerging micropollutants, and also offers a valuable tool to assess the fate of micropollutants during chlorination of drinking water.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro , Teorema de Bayes , Cinética , Poluentes Químicos da Água/análise , Halogenação
14.
J Cheminform ; 15(1): 89, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752561

RESUMO

Computational molecular design can yield chemically unreasonable compounds when performed carelessly. A popular strategy to mitigate this risk is mimicking reference chemistry. This is commonly achieved by restricting the way in which molecules are constructed or modified. While it is well established that such an approach helps in designing chemically appealing molecules, concerns about these restrictions impacting chemical space exploration negatively linger. In this work we present a software library for constrained graph-based molecule manipulation and showcase its functionality by developing a molecule generator. Said generator designs molecules mimicking reference chemical features of differing granularity. We find that restricting molecular construction lightly, beyond the usual positive effects on drug-likeness and synthesizability of designed molecules, provides guidance to optimization algorithms navigating chemical space. Nonetheless, restricting molecular construction excessively can indeed hinder effective chemical space exploration.

15.
Anal Chim Acta ; 1278: 341720, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709461

RESUMO

Ion mobility coupled with mass spectrometry (IM-MS), an emerging technology for analysis of complex matrix, has been facing challenges due to the complexities of chemical structures and original data, as well as low-efficiency and error-proneness of manual operations. In this study, we developed a structural similarity networking assisted collision cross-section prediction interval filtering (SSN-CCSPIF) strategy. We first carried out a structural similarity networking (SSN) based on Tanimoto similarities among Morgan fingerprints to classify the authentic compounds potentially existing in complex matrix. By performing automatic regressive prediction statistics on mass-to-charge ratios (m/z) and collision cross-sections (CCS) with a self-built Python software, we explored the IM-MS feature trendlines, established filtering intervals and filtered potential compounds for each SSN classification. Chemical structures of all filtered compounds were further characterized by interpreting their multidimensional IM-MS data. To evaluate the applicability of SSN-CCSPIF, we selected Ginkgo biloba extract and dripping pills. The SSN-CCSPIF subtracted more background interferences (43.24%∼43.92%) than other similar strategies with conventional ClassyFire criteria (10.71%∼12.13%) or without compound classification (35.73%∼36.63%). Totally, 229 compounds, including eight potential new compounds, were characterized. Among them, seven isomeric pairs were discriminated with the integration of IM-separation. Using SSN-CCSPIF, we can achieve high-efficient analysis of complex IM-MS data and comprehensive chemical profiling of complex matrix to reveal their material basis.

16.
Sci Total Environ ; 904: 166316, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591396

RESUMO

Hydrated electrons (eaq-) exhibit rapid degradation of diverse persistent organic contaminants (OCs) and hold great promise as a formidable reducing agent in water treatment. However, the diverse structures of compounds exert different influences on the second-order rate constant of hydrated electron reactions (keaq-), while the same OCs demonstrate notable discrepancies in keaq- values across different pH levels. This study aims to develop machine learning (ML) models that can effectively simulate the intricate reaction kinetics between eaq- and OCs. Furthermore, the introduction of the pH variable enables a comprehensive investigation into the impact of ambient conditions on this process, thereby improving the practicality of the model. A dataset encompassing 701 keaq- values derived from 351 peer-reviewed publications was compiled. To comprehensively investigate compound properties, this study introduced molecular descriptor (MD), molecular fingerprint (MF), and the integration of both (MD + MF) as model variables. Furthermore, 60 sets of predictive models were established utilizing two variable screening methodologies (MLR and RF) and ten prominent algorithms. Through statistical parameter analysis, it was determined that descriptors combined with MD and MF, the RF screening method, and the symbolism algorithm exhibited the best predictive efficacy. Importantly, the combination of descriptor models exhibited significantly superior performance compared to individual MF and MD models. Notably, the optimal model, denoted as RF - (MF + MD) - LGB, exhibited highly satisfactory predictive results (R2tra = 0.967, Q2tra = 0.840, R2ext = 0.761). The mechanistic explanation study based on Shapley Additive Explanations (SHAP) values further elucidated the crucial influences of polarity, pH, molecular weight, electronegativity, carbon-carbon double bonds, and molecular topology on the degradation of OCs by eaq-. The proposed modeling approach, particularly the integration of MF and MD, alongside the introduction of pH, may furnish innovative ideas for advanced reduction or oxidation processes (ARPs/AOPs) and machine learning applications in other domains.

17.
Plants (Basel) ; 12(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631226

RESUMO

The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin-Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits.

18.
SAR QSAR Environ Res ; 34(8): 619-637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565331

RESUMO

The HDAC6 (histone deacetylase 6) enzyme plays a key role in many biological processes, including cell division, apoptosis, and immune response. To date, HDAC6 inhibitors are being developed as effective drugs for the treatment of various diseases. In this work, adequate QSAR models of HDAC6 inhibitors are proposed. They are integrated into the developed application HDAC6 Detector, which is freely available at https://ovttiras-hdac6-detector-hdac6-detector-app-yzh8y5.streamlit.app/. The web application HDAC6 Detector can be used to perform virtual screening of HDAC6 inhibitors by dividing the compounds into active and inactive ones relative to the reference vorinostat compound (IC50 = 10.4 nM). The web application implements a structural interpretation of the developed QSAR models. In addition, the application can evaluate the compliance of a compound with Lipinski's rule. The developed models are used for virtual screening of a series of 12 new hydroxamic acids, namely, the derivatives of 3-hydroxyquinazoline-4(3H)-ones and 2-aryl-2,3-dihydroquinazoline-4(1H)-ones. In vitro evaluation of the inhibitory activity of this series of compounds against HDAC6 allowed us to confirm the results of virtual screening and to select promising compounds V-6 and V-11, the IC50 of which is 0.99 and 0.81 nM, respectively.


Assuntos
Inibidores de Histona Desacetilases , Relação Quantitativa Estrutura-Atividade , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Vorinostat , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química
19.
Water Res ; 243: 120336, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37454458

RESUMO

A comparative study of the different advanced oxidation processes (Fe(II)-Oxone, Fe(II)-H2O2, and Fe(II)-NaClO) was carried out herein to analyze the characteristics of organic components and the migration of heavy metals in waste activated sludge. With the Fe(II)-Oxone and Fe(II)-H2O2 treatments, sludge dewaterability was significantly improved, however, sludge dewaterability was deteriorated by the Fe(II)-NaClO treatment. The enhanced sludge dewaterability by the Fe(II)-Oxone and Fe(II)-H2O2 treatments was strongly correlated with the shifted organic components, particularly proteins, in soluble extracellular polymeric substances (S-EPS), while the deteriorated sludge dewaterability by the Fe(II)-NaClO treatment was strongly correlated with the over release of organic components from bound EPS (B-EPS) to S-EPS. For both the Fe(II)-Oxone and Fe(II)-H2O2 treatments, the radicals preferentially attacked humic acid-like organic components over the protein-like organic components in S-EPS, while for the Fe(II)-NaClO treatment, interestingly, the radicals preferentially attacked the protein-like organic components in both S-EPS and B-EPS. The hydrophilic functional groups like phenolic OH and CO of polysaccharides may be more preferentially migrated to S-EPS of sludge by the Fe(II)-NaClO treatment compared to the other two treatments. With the Fe(II)-Oxone and Fe(II)-H2O2 treatments, the proportion of aliphatic compounds as well as the much oxygenated organic components with a low desaturation and a low molecular weight increased. While with the Fe(II)-NaClO treatment, the proportion of low oxygenated organic components with a high desaturation and a high molecular weight increased. The concentration of total organic carbon, particularly the concentration of proteins, may be the key factor determining the shift of Zn and Cu from sludge solid to liquid phase, along with the high oxidation extent of organic components and close binding to CHOS and CHON compounds as indicated by density functional theory (DFT) calculation. This study systematically revealed the simultaneous sludge dewatering and migration of heavy metals when the role of organic components was factored into herein.


Assuntos
Metais Pesados , Esgotos , Esgotos/química , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Água/química , Oxirredução , Análise Espectral , Proteínas , Compostos Ferrosos/química
20.
Polymers (Basel) ; 15(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447599

RESUMO

The power conversion efficiency (PCE) of ternary polymer solar cells (PSCs) with non-fullerene has a phenomenal increase in recent years. However, improving the open circuit voltage (Voc) of ternary PSCs with non-fullerene still remains a challenge. Therefore, in this work, machine learning (ML) algorithms are employed, including eXtreme gradient boosting, K-nearest neighbor and random forest, to quantitatively analyze the impact mechanism of Voc in ternary PSCs with the double acceptors from the two aspects of photovoltaic materials. In one aspect of photovoltaic materials, the doping concentration has the greatest impact on Voc in ternary PSCs. Furthermore, the addition of the third component affects the energy offset between the donor and acceptor for increasing Voc in ternary PSCs. More importantly, to obtain the maximum Voc in ternary PSCs with the double acceptors, the HOMO and LUMO energy levels of the third component should be around (-5.7 ± 0.1) eV and (-3.6 ± 0.1) eV, respectively. In the other aspect of molecular descriptors and molecular fingerprints in the third component of ternary PSCs with the double acceptors, the hydrogen bond strength and aromatic ring structure of the third component have high impact on the Voc of ternary PSCs. In partial dependence plot, it is clear that when the number of methyl groups is four and the number of carbonyl groups is two in the third component of acceptor, the Voc of ternary PSCs with the double acceptors can be maximized. All of these findings provide valuable insights into the development of materials with high Voc in ternary PSCs for saving time and cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA