Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Breed ; 44(8): 53, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39130616

RESUMO

Fruit peel color is a major factor that influences fruit quality and customers' demand. However, the molecular mechanisms underlying the green fruit peel color trait of Cucurbita pepo L. remain unknown. Two parental lines, RP16 and RP38, were used to study the fruit peel color trait in C. pepo. The parental line RP16 shows white peel color, whereas RP38 exhibits green peel color. 384 F2 populations were used to identify the inheritance pattern associated with green fruit and white fruit peel in Cucurbita pepo L. 293 F2 individuals were white, and 91 F2 individuals were green, resulting in a ratio of 3:1. Hence, white peel is dominant over the green fruit peel trait, and a single recessive green peel gene (Cpgp) controls the green fruit peel. The fruit chlorophyll (Chll) content decreases as fruit matures in the RP16 line. In contrast, Chll increases during the fruit growing periods on fruit peels of the RP38 line. The BSA-sequence analysis revealed the Cpgp locus on Chr5, within a 2.3 Mb region. Subsequent fine-mapping analysis, using 699 F2 plants, narrowed down this region to 23.90 kb on the same chromosome. Within this region, two annotated genes, namely Cp4.1LG05g02070 and Cp4.1LG05g02060, are present. These genes are predicted to encode a two-component Arabidopsis Pseudo-Response Regulator 2-like protein (APRR2), which may be involved in green pigmentation processes in plants. Consequently, sequence alignment and gene expression analyses at various fruit development stages supported that Cp4.1LG05g02070 may be the primary candidate gene responsible for regulating the green fruit peel color trait in Cucurbita pepo L. This study may provide a basis for further study on the basic mechanisms that control the fruit peel colors in Cucurbita spp. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01492-7.

2.
Plant Dis ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853337

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally-friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA-Seq combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 cM, respectively, corresponding to the bread wheat genome of Chinese Spring (IWGSC RefSeq v2.1) 703.8-707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease resistance breeding.

3.
Cell ; 187(9): 2158-2174.e19, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38604175

RESUMO

Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps. We found that the process initiates with the formation of a naked cartwheel devoid of microtubules. Next, the bloom phase progresses with microtubule blade assembly, concomitantly with radial separation and rapid cartwheel growth. In the subsequent elongation phase, the tubulin backbone grows linearly with the recruitment of the A-C linker, followed by proteins of the inner scaffold (IS). By following six structural modules, we modeled 4D assembly of the human centriole. Collectively, this work provides a framework to investigate the spatial and temporal assembly of large macromolecules.


Assuntos
Centríolos , Microtúbulos , Centríolos/metabolismo , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Plant Dis ; 108(4): 1062-1072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38640452

RESUMO

Wheat powdery mildew, caused by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is one of the most devastating diseases affecting wheat throughout the world. Breeding and growing resistant wheat cultivars is one of the most economic and effective methods to control the disease, and as such, identifying and mapping the new and effective resistance genes is critical. Baidatou, a Chinese wheat landrace, shows excellent field resistance to powdery mildew. To identify the resistance gene(s) in Baidatou, 170 F7:8 recombinant inbred lines (RILs) derived from the cross Mingxian 169/Baidatou were evaluated for powdery mildew response at the adult-plant stage in the experimental fields in Yangling (YL) of Shaanxi Province and Tianshui (TS) in Gansu Province in 2019, 2020, and 2021. The relative area under disease progress curve (rAUDPC) of Mingxian 169/Baidatou F7:8 RILs indicated that the resistance of Baidatou to powdery mildew was controlled by quantitative trait loci (QTLs). Based on bulk segregation analysis combined with the 660K single nucleotide polymorphism (SNP) array and genotyping by target sequencing (16K SNP) of the entire RIL population, two QTLs, QPmbdt.nwafu-2AS and QPmbdt.nwafu-3AS, were identified, and these accounted for up to 44.5% of the phenotypic variation. One of the QTLs was located on the 3.32 cM genetic interval on wheat chromosome 2AS between the kompetitive allele-specific PCR markers AX-111012288 and AX_174233809, and another was located on the 9.6 cM genetic interval on chromosome 3AS between the SNP markers 3A_684044820 and 3A_686681822. These markers could be useful for successful breeding of powdery mildew resistance in wheat.


Assuntos
Ascomicetos , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Resistência à Doença/genética , Ascomicetos/fisiologia , Cromossomos de Plantas/genética , China , Melhoramento Vegetal
5.
Mol Breed ; 44(4): 28, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545461

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a severe disease that affects the yield and quality of wheat. Popularization of resistant cultivars in production is the preferred strategy to control this disease. In the present study, the Chinese wheat breeding line Jimai 809 showed excellent agronomic performance and high resistance to powdery mildew at the whole growth stage. To dissect the genetic basis for this resistance, Jimai 809 was crossed with the susceptible wheat cultivar Junda 159 to produce segregation populations. Genetic analysis showed that a single dominant gene, temporarily designated PmJM809, conferred the resistance to different Bgt isolates. PmJM809 was then mapped on the chromosome arm 2BL and flanked by the markers CISSR02g-1 and CIT02g-13 with genetic distances 0.4 and 0.8 cM, respectively, corresponding to a physical interval of 704.12-708.24 Mb. PmJM809 differed from the reported Pm genes on chromosome arm 2BL in origin, resistance spectrum, physical position and/or genetic diversity of the mapping interval, also suggesting PmJM809 was located on a complex interval with multiple resistance genes. To analyze and screen the candidate gene(s) of PmJM809, six genes related to disease resistance in the candidate interval were evaluated their expression patterns using an additional set of wheat samples and time-course analysis post-inoculation of the Bgt isolate E09. As a result, four genes were speculated as the key candidate or regulatory genes. Considering its comprehensive agronomic traits and resistance findings, PmJM809 was expected to be a valuable gene resource in wheat disease resistance breeding. To efficiently transfer PmJM809 into different genetic backgrounds, 13 of 19 closely linked markers were confirmed to be suitable for marker-assisted selection. Using these markers, a series of wheat breeding lines with harmonious disease resistance and agronomic performance were selected from the crosses of Jimai 809 and several susceptible cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01467-8.

6.
Neurophotonics ; 11(1): 014414, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38464866

RESUMO

Imaging neuronal architecture has been a recurrent challenge over the years, and the localization of synaptic proteins is a frequent challenge in neuroscience. To quantitatively detect and analyze the structure of synapses, we recently developed free SODA software to detect the association of pre and postsynaptic proteins. To fully take advantage of spatial distribution analysis in complex cells, such as neurons, we also selected some new dyes for plasma membrane labeling. Using Icy SODA plugin, we could detect and analyze synaptic association in both conventional and single molecule localization microscopy, giving access to a molecular map at the nanoscale level. To replace those molecular distributions within the neuronal three-dimensional (3D) shape, we used MemBright probes and 3D STORM analysis to decipher the entire 3D shape of various dendritic spine types at the single-molecule resolution level. We report here the example of synaptic proteins within neuronal mask, but these tools have a broader spectrum of interest since they can be used whatever the proteins or the cellular type. Altogether with SODA plugin, MemBright probes thus provide the perfect toolkit to decipher a nanometric molecular map of proteins within a 3D cellular context.

7.
Plant Dis ; 108(1): 13-19, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37526485

RESUMO

Wheat leaf rust (Lr), which is caused by Puccinia triticina Eriks. (Pt), is one of the most important wheat diseases affecting wheat production globally. Using resistant wheat cultivars is the most economical and environmentally friendly way to control leaf rust. The Italian wheat cultivar Libellula has demonstrated good resistance to Lr in field studies. To identify the genetic basis of Lr resistance in 'Libellula', 248 F6 recombinant inbred lines from the cross 'Libellula'/'Huixianhong' was phenotyped for Lr severity in seven environments: the 2014/2015, 2016/2017, 2017/2018, and 2018/2019 cropping seasons at Baoding, Hebei Province, and the 2016/2017, 2017/2018, and 2018/2019 crop seasons at Zhoukou, Henan Province. Bulked segregant analysis and simple sequence repeat markers were then used to identify the quantitative trait loci (QTLs) for Lr adult-plant resistance in the population. Six QTLs were consequently detected and designated as QLr.hebau-1AL and QLr.hebau-1AS that were presumed to be new and QLr.hebau-1BL, QLr.hebau-3AL, QLr.hebau-4BL, and QLr.hebau-7DS that were identified at similar physical positions as previously reported QTLs. Based on chromosome positions and molecular marker tests, QLr.hebau-1BL and QLr.hebau-7DS share similar flanking markers with Lr46 and Lr34, respectively. Lr46 and Lr34 are race nonspecific adult plant resistance (APR) genes for leaf rust and stripe rust and powdery mildew. QLr.hebau-4BL showed multiple disease resistance to leaf rust, stripe rust, Fusarium head blight, and powdery mildew. The QTL identified in this study, as well as their closely linked markers, may potentially be used in marker-assisted selection in wheat breeding.


Assuntos
Basidiomycota , Puccinia , Triticum , Triticum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Mapeamento Cromossômico , Basidiomycota/genética , Itália
8.
Mol Breed ; 43(12): 83, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38009099

RESUMO

Low temperature and cold damage are natural factors that seriously reduce wheat yield. Thus, how to improve the cold resistance of wheat has been the focus of wheat breeders and geneticists. However, the genetic improvement for this trait has been slow, mainly because cold resistance is a complex quantitative trait and field phenotypic identification is relatively difficult. Therefore, the discovery, mapping, and cloning of the cold resistance genes of wheat provide a theoretical basis for the genetic improvement of wheat against cold resistance and facilitate the analysis of the molecular mechanisms of cold resistance in wheat. This study used the wheat line H261 and its EMS mutants LF2099 and XiNong 239 as materials. Cold trait segregation occurred in the F2 generation of mutants LF2099 and XiNong 239 at a 15:1 separation ratio. Genetic analysis showed that two dominant overlapping genes, temporarily named Wcr-3 and Wcr-4, control cold resistance in wheat. Furthermore, a combined BSA and SNP array established that Wcr-3 is between BU100519 (SSR marker) and AX-94843669 (SNP marker). The markers are 1.32 cM apart, corresponding to the 5.41 Mb physical interval on the Chinese Spring 2B chromosome with 67 functionally annotated genes. Wcr-4 is located between AX-94657955 (SNP marker) and LC-23 (SSR marker), which are 1.79 cM apart, corresponding to a 2.35 Mb physical interval on the Chinese Spring 2D chromosome, which contains 66 functionally annotated genes. Wcr-3 and Wcr-4 are two new cold resistance genes, laying the foundation for their fine mapping and cloning. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01425-w.

9.
Anal Bioanal Chem ; 415(18): 4093-4110, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269305

RESUMO

Mass spectrometry imaging (MSI) is a sensitive, specific, label-free imaging analysis technique that can simultaneously obtain the spatial distribution, relative content, and structural information of hundreds of biomolecules in cells and tissues, such as lipids, small drug molecules, peptides, proteins, and other compounds. The study of molecular mapping of single cells can reveal major scientific issues such as the activity pattern of living organisms, disease pathogenesis, drug-targeted therapy, and cellular heterogeneity. Applying MSI technology to the molecular mapping of single cells can provide new insights and ideas for the study of single-cell metabolomics. This review aims to provide an informative resource for those in the MSI community who are interested in single-cell imaging. Particularly, we discuss advances in imaging schemes and sample preparation, instrumentation improvements, data processing and analysis, and 3D MSI over the past few years that have allowed MSI to emerge as a powerful technique in the molecular imaging of single cells. Also, we highlight some of the most cutting-edge studies in single-cell MSI, demonstrating the future potential of single-cell MSI. Visualizing molecular distribution at the single-cell or even sub-cellular level can provide us with richer cell information, which strongly contributes to advancing research fields such as biomedicine, life sciences, pharmacodynamic testing, and metabolomics. At the end of the review, we summarize the current development of single-cell MSI technology and look into the future of this technology.


Assuntos
Peptídeos , Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/metabolismo , Imageamento Tridimensional , Metabolômica/métodos
11.
BMC Plant Biol ; 23(1): 113, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823576

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious fungal disease that critically threatens the yield and quality of wheat. Utilization of host resistance is the most effective and economical method to control this disease. In our study, a wheat breeding line ShiCG15-009, released from Hebei Province, was highly resistant to powdery mildew at all stages. To dissect its genetic basis, ShiCG15-009 was crossed with the susceptible cultivar Yannong 21 to produce F1, F2 and F2:3 progenies. After genetic analysis, a single dominant gene, tentatively designated PmCG15-009, was proved to confer resistance to Bgt isolate E09. Further molecular markers analysis showed that PmCG15-009 was located on chromosome 2BL and flanked by markers XCINAU130 and XCINAU143 with the genetic distances 0.2 and 0.4 cM, respectively, corresponding to a physic interval of 705.14-723.48 Mb referred to the Chinese Spring reference genome sequence v2.1. PmCG15-009 was most likely a new gene differed from the documented Pm genes on chromosome 2BL since its different origin, genetic diversity, and physical position. To analyze and identify the candidate genes, six genes associated with disease resistance in the candidate interval were confirmed to be associated with PmCG15-009 via qRT-PCR analysis using the parents ShiCG15-009 and Yannong 21 and time-course analysis post-inoculation with Bgt isolate E09. To accelerate the transfer of PmCG15-009 using marker-assisted selection (MAS), 18 closely or co-segregated markers were evaluated and confirmed to be suitable for tracing PmCG15-009, when it was transferred into different wheat cultivars.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico/métodos , Marcadores Genéticos , Genes de Plantas/genética , Resistência à Doença/genética , Erysiphe , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
12.
Front Plant Sci ; 13: 1019496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262655

RESUMO

Hull color of foxtail millet is an important indicator of certain nutritional quality parameters. An F2:6 recombinant inbred line (RIL) population developed by crossing a yellow-hulled cultivar Yugu 5 and a brown-hulled cultivar Jigu 31 was used to determine the genetic control of the hull color trait. This population segregated for yellow and brown hull colors in a ratio of 2:1, indicating that hull color is regulated by multiple genetic loci. A bulk segregant analysis-RNA sequencing (BSR-Seq) approach performed using the RNA bulks from 30 lines with brown and yellow hull colors each identified three genomic regions on chromosomes 1 (4,570,517-10,698,955 bp), 2 (40,301,380-46,168,003 bp), and 3 (44,469,860-50,532,757 bp). A new QTL for brown hull color of Jigu 31, QHC.czas1, was detected between bin markers Block43 and Block697 on chromosome 1 with the genetic linkage map constructed by re-sequencing a subset of the 147 RILs. This QTL explained a high level of phenotypic variation ranging from 28.0% to 47.0%. The corresponding genomic region of this QTL in the foxtail millet reference genome overlapped with that detected on chromosome 1 by the BSR-Seq analysis. Nineteen genes associated with biosynthesis of anthocyanin were annotated in this genomic region. Gene Si1g06530 encoding a SANT/Myb domain protein was highly expressed in developing panicles and seeds, which warrants further verification as the candidate gene for the brown color hull of Jigu 31. Moreover, several annotated genes for biosynthesis of anthocyanin were identified in the genomic regions of chromosomes 2 and 3.

13.
Front Plant Sci ; 13: 1005627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147228

RESUMO

Powdery mildew of wheat (Triticum aestivum), caused by Blumeria graminis f.sp. tritici (Bgt), is a destructive disease that seriously threatens the yield and quality of its host. Identifying resistance genes is the most attractive and effective strategy for developing disease-resistant cultivars and controlling this disease. In this study, a wheat breeding line Yannong 99102-06188 (YN99102), an elite derivative line from the same breeding process as the famous wheat cultivar Yannong 999, showed high resistance to powdery mildew at the whole growth stages. Genetic analysis was carried out using Bgt isolate E09 and a population of YN99102 crossed with a susceptible parent Jinhe 13-205 (JH13-205). The result indicated that a single recessive gene, tentatively designated pmYN99102, conferred seedling resistance to the Bgt isolate E09. Using bulked segregant exome capture sequencing (BSE-Seq), pmYN99102 was physically located to a ~33.7 Mb (691.0-724.7 Mb) interval on the chromosome arm 2BL, and this interval was further locked in a 1.5 cM genetic interval using molecular markers, which was aligned to a 9.0 Mb physical interval (699.2-708.2 Mb). Based on the analysis of physical location, origin, resistant spectrum, and inherited pattern, pmYN99102 differed from those of the reported powdery mildew (Pm) resistance genes on 2BL, suggesting pmYN99102 is most likely a new Pm gene/allele in the targeted interval. To transfer pmYN99102 to different genetic backgrounds using marker-assisted selection (MAS), 18 closely linked markers were tested for their availability in different genetic backgrounds for MAS, and all markers expect for YTU103-97 can be used in MAS for tracking pmYN99102 when it transferred into those susceptible cultivars.

14.
Cells ; 11(16)2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010625

RESUMO

Eggplant (Solanum melongena L.), similar to many other crops, suffers from soil-borne diseases, including Fusarium oxysporum f. sp. melongenae (Fom), causing wilting and heavy yield loss. To date, the genetic factors underlying plant responses to Fom are not well known. We previously developed a Recombinant Inbred Lines (RILs) population using as a female parent the fully resistant line '305E40' and as a male parent the partially resistant line '67/3'. The fully resistant trait to Fom was introgressed from the allied species S. aethiopicum. In this work, the RIL population was assessed for the responses to Fom and by using a genomic mapping approach, two major QTLs on chromosomes CH02 and CH11 were identified, associated with the full and partial resistance trait to Fom, respectively. A targeted BSAseq procedure in which Illumina reads bulks of RILs grouped according to their resistance score was aligned to the appropriate reference genomes highlighted differentially enriched regions between resistant/susceptible progeny in the genomic regions underlying both QTLs. The characterization of such regions allowed us to identify the most reliable candidate genes for the two resistance traits. With the aim of revealing exclusive species-specific contigs and scaffolds inherited from the allied species and thus associated with the full resistance trait, a draft de-novo assembly of available Illumina sequences of the '305E40' parent was developed to better resolve the non-recombining genomic region on its CH02 carrying the introgressed Fom resistance locus from S. aethiopicum.


Assuntos
Fusarium , Solanum melongena , Fusarium/genética , Genômica , Doenças das Plantas/genética , Solanum melongena/genética
15.
Front Plant Sci ; 13: 894528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837449

RESUMO

Leaf rust and stripe rust are important wheat diseases worldwide causing significant losses where susceptible varieties are grown. Resistant cultivars offer long-term control and reduce the use of hazardous chemicals, which can be detrimental to both human health and the environment. Land races have been a valuable resource for mining new genes for various abiotic and biotic stresses including wheat rusts. Afghan wheat landrace "KU3067" displayed high seedling infection type (IT) for leaf rust and low IT for stripe rust; however, it displayed high levels of field resistance for both rusts when tested for multiple seasons against the Mexican rust isolates. This study focused on identifying loci-conferring seedling resistance to stripe rust, and also loci-conferring adult plant resistance (APR) against the Mexican races of leaf rust and stripe rust. A backcrossed inbred line (BIL) population advanced to the BC1F5 generation derived from the cross of KU3067 and Apav (triple rust susceptible line) was used for both, inheritance and QTL mapping studies. The population and parents were genotyped with Diversity Arrays Technology-genotyping-by-sequencing (DArT-Seq) and phenotyped for leaf rust and stripe rust response at both seedling and adult plant stages during multiple seasons in Mexico with relevant pathotypes. Mapping results identified an all-stage resistance gene for stripe rust, temporarily designated as YrKU, on chromosome 7BL. In total, six QTL-conferring APR to leaf rust on 1AS, 2AL, 4DL, 6BL, 7AL, and 7BL, and four QTL for stripe rust resistance on 1BS, 2AL, 4DL, and 7BL were detected in the analyses. Among these, pleiotropic gene Lr67/Yr46 on 4DL with a significantly large effect is the first report in an Afghan landrace-conferring resistance to both leaf and stripe rusts. QLr.cim-7BL/YrKU showed pleiotropic resistance to both rusts and explained 7.5-17.2 and 12.6-19.3% of the phenotypic variance for leaf and stripe rusts, respectively. QYr.cim-1BS and QYr.cim-2AL detected in all stripe environments with phenotypic variance explained (PVE) 12.9-20.5 and 5.4-12.5%, and QLr.cim-6BL are likely to be new. These QTL and their closely linked markers will be useful for fine mapping and marker-assisted selection (MAS) in breeding for durable resistance to multiple rust diseases.

16.
Methods Mol Biol ; 2468: 141-203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320565

RESUMO

Studies of C. elegans will benefit from a powerful method for super-resolution imaging of proteins and mRNAs at any 3-D locations throughout the entire animal. Conventional methods of super-resolution imaging in C. elegans, such as STORM, PALM, SR-SIM and STED, are limited by imaging depths that are insufficient to map the entire depth of adult worms, and involve hardware that may not be accessible to all labs. We recently developed expansion of C. elegans (ExCel), a method for physically magnifying fixed whole animals of C. elegans with high isotropy, which provides effective resolutions finer than the diffraction limit, across the entire animal, on conventional confocal microscopes. In this chapter, we present a family of three detailed ExCel protocols. The standard ExCel protocol features simultaneous readout of diverse molecules (fluorescent proteins, RNA, DNA, and general anatomy), all at ~70 nm resolution (~3.5× linear expansion). The epitope-preserving ExCel protocol enables imaging of endogenous proteins with off-the-shelf antibodies, at a ~ 100 nm resolution (~2.8× linear expansion). The iterative ExCel protocol allows readout of fluorescent proteins at ~25 nm resolution (~20× linear expansion). The protocols described here comprise a versatile toolbox for super-resolution imaging of C. elegans.


Assuntos
Caenorhabditis elegans , Proteínas , Animais , DNA , Microscopia de Fluorescência/métodos , RNA
17.
Plant Dis ; 106(8): 2090-2096, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35196106

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases in wheat worldwide. Planting resistant varieties is the most economical, effective, and environment-friendly measure to control wheat stripe rust. Changfeng 75, a Chinese winter wheat variety, shows high stripe rust resistance in both seedling and adult-plant stages. The seedling tests of F1, F2, and F2:3 populations derived from Mingxian 169/Changfeng 75 inoculated with Chinese predominant Pst race CYR34 showed that the stripe rust resistance of Changfeng 75 was controlled by a single recessive gene. The locus was temporarily designated as YrCf75. Bulked segregant analysis (BSA) combined with the wheat 660K single-nucleotide polymorphism (SNP) array and bulked segregant RNA-sequencing indicated that the proportion of polymorphic SNPs on wheat chromosome 2A was the highest, which suggested that YrCf75 was likely located on chromosome 2A. Two hundred and twenty-five Kompetitive allele-specific PCR (KASP) and 75 simple sequence repeat (SSR) markers on chromosome 2A were used to map YrCf75 using the BSA approach. Linkage analysis indicated that 31 KASP markers and one SSR marker were linked to YrCf75, and the genetic distances of the two closest flanking KASP markers, AX-1110060462 and AX-111004763, were 1.2 and 2.7 cM, respectively. YrCf75 was located on wheat chromosome 2AL. The molecular detection, resistance specificity, and chromosome location showed that YrCf75 is likely a new gene that is different from the known stripe rust resistance genes (Yr1 and Yr32) on wheat chromosome 2AL.


Assuntos
Basidiomycota , Resistência à Doença , Basidiomycota/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas , Genes Recessivos , Genótipo , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , RNA , Triticum/genética
18.
Front Plant Sci ; 13: 1064556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589066

RESUMO

Parthenocarpy is an extremely important trait that revolutionized the worldwide cultivation of cucumber under protected conditions. Pusa Parthenocarpic Cucumber-6 (PPC-6) is one of the important commercially cultivated varieties under protected conditions in India. Understanding the genetics of parthenocarpy, molecular mapping and the development of molecular markers closely associated with the trait will facilitate the introgression of parthenocarpic traits into non-conventional germplasm and elite varieties. The F1, F2 and back-crosses progenies with a non-parthenocarpic genotype, Pusa Uday indicated a single incomplete dominant gene controlling parthenocarpy in PPC-6. QTL-seq comprising of the early parthenocarpy and non-parthenocarpic bulks along with the parental lines identified two major genomic regions, one each in chromosome 3 and chromosome 6 spanning over a region of 2.7 Mb and 7.8 Mb, respectively. Conventional mapping using F2:3 population also identified two QTLs, Parth6.1 and Parth6.2 in chromosome 6 which indicated the presence of a major effect QTL in chromosome 6 determining parthenocarpy in PPC-6. The flanking markers, SSR01148 and SSR 01012 for Parth6.1 locus and SSR10476 and SSR 19174 for Parth6.2 locus were identified and can be used for introgression of parthenocarpy through the marker-assisted back-crossing programme. Functional annotation of the QTL-region identified two major genes, Csa_6G396640 and Csa_6G405890 designated as probable indole-3-pyruvate monooxygenase YUCCA11 and Auxin response factor 16, respectively associated with auxin biosynthesis as potential candidate genes. Csa_6G396640 showed only one insertion at position 2179 in the non-parthenocarpic parent. In the case of Csa_6G405890, more variations were observed between the two parents in the form of SNPs and InDels. The study provides insight about genomic regions, closely associated markers and possible candidate genes associated with parthenocarpy in PPC-6 which will be instrumental for functional genomics study and better understanding of parthenocarpy in cucumber.

19.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681841

RESUMO

Crown rust, caused by Puccinia coronata f. sp. avenae, is one of the most destructive fungal diseases of oat worldwide. Growing disease-resistant oat cultivars is the preferred method of preventing the spread of rust and potential epidemics. The object of the study was Pc50-5, a race-specific seedling crown rust resistant gene, highly effective at all growth stages, selected from the differential line Pc50 (Avena sterilis L. CW 486-1 × Pendek). A comparison of crown rust reaction as well as an allelism test showed the distinctiveness of Pc50-5, whereas the proportions of phenotypes in segregating populations derived from a cross with two crown rust-susceptible Polish oat cultivars, Kasztan × Pc50-5 and Bingo × Pc50-5, confirmed monogenic inheritance of the gene, indicating its usefulness in oat breeding programs. Effective gene introgression depends on reliable gene identification in the early stages of plant development; thus, the aim of the study was to develop molecular markers that are tightly linked to Pc50-5. Segregating populations of Kasztan × Pc50-5 were genotyped using DArTseq technology based on next-generation Illumina short-read sequencing. Markers associated with Pc50-5 were located on chromosome 6A of the current version of the oat reference genome (Avena sativa OT3098 v2, PepsiCo) in the region between 434,234,214 and 440,149,046 bp and subsequently converted to PCR-based SCAR (sequence-characterized amplified region) markers. Furthermore, 5426978_SCAR and 24031809_SCAR co-segregated with the Pc50-5 resistance allele and were mapped to the partial linkage group at 0.6 and 4.0 cM, respectively. The co-dominant 58163643_SCAR marker was the best diagnostic and it was located closest to Pc50-5 at 0.1 cM. The newly discovered, very strong monogenic crown rust resistance may be useful for oat improvement. DArTseq sequences converted into specific PCR markers will be a valuable tool for marker-assisted selection in breeding programs.


Assuntos
Avena/genética , Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Puccinia , Avena/metabolismo , Avena/fisiologia , Cromossomos de Plantas , Micoses , Melhoramento Vegetal , Doenças das Plantas
20.
BMC Genomics ; 22(1): 63, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468043

RESUMO

BACKGROUND: The wheat dwarfing gene increases lodging resistance, the grain number per spike and harvest index. Dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB, DPW), initially collected from Tulufan, Xinjiang, China, carries a semi-dwarfing gene Rht-dp on chromosome 4BS. However, Rht-dp and its dwarfing mechanism are unknown. RESULTS: Homologous cloning and mapping revealed that Rht-dp is the 'Green Revolution' gene Rht-B1b. A haplotype analysis in 59 tetraploid wheat accessions showed that Rht-B1b was only present in T. polonicum. Transcriptomic analysis of two pairs of near-isogenic lines (NILs) of DPW × Tall Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB, TPW) revealed 41 differentially expressed genes (DEGs) as potential dwarfism-related genes. Among them, 28 functionally annotated DEGs were classed into five sub-groups: hormone-related signalling transduction genes, transcription factor genes, cell wall structure-related genes, reactive oxygen-related genes, and nitrogen regulation-related genes. CONCLUSIONS: These results indicated that Rht-dp is Rht-B1b, which regulates pathways related to hormones, reactive oxygen species, and nitrogen assimilation to modify the cell wall structure, and then limits cell wall loosening and inhibits cell elongation, thereby causing dwarfism in DPW.


Assuntos
Triticum , China , Genes de Plantas , Polônia , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA