Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Graph Model ; 132: 108843, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39173218

RESUMO

Deep learning is playing an increasingly important role in accurate prediction of molecular properties. Prior to being processed by a deep learning model, a molecule is typically represented in the form of a text or a graph. While some methods attempt to integrate these two forms of molecular representations, the misalignment of graph and text embeddings presents a significant challenge to fuse two modalities. To solve this problem, we propose a method that aligns and fuses graph and text features in the embedding space by using contrastive loss and cross attentions. Additionally, we enhance the molecular representation by incorporating multi-granularity information of molecules on the levels of atoms, functional groups, and molecules. Extensive experiments show that our model outperforms state-of-the-art models in downstream tasks of molecular property prediction, achieving superior performance with less pretraining data. The source codes and data are available at https://github.com/zzr624663649/multimodal_molecular_property.

2.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39133096

RESUMO

The molecular property prediction (MPP) plays a crucial role in the drug discovery process, providing valuable insights for molecule evaluation and screening. Although deep learning has achieved numerous advances in this area, its success often depends on the availability of substantial labeled data. The few-shot MPP is a more challenging scenario, which aims to identify unseen property with only few available molecules. In this paper, we propose an attribute-guided prototype network (APN) to address the challenge. APN first introduces an molecular attribute extractor, which can not only extract three different types of fingerprint attributes (single fingerprint attributes, dual fingerprint attributes, triplet fingerprint attributes) by considering seven circular-based, five path-based, and two substructure-based fingerprints, but also automatically extract deep attributes from self-supervised learning methods. Furthermore, APN designs the Attribute-Guided Dual-channel Attention module to learn the relationship between the molecular graphs and attributes and refine the local and global representation of the molecules. Compared with existing works, APN leverages high-level human-defined attributes and helps the model to explicitly generalize knowledge in molecular graphs. Experiments on benchmark datasets show that APN can achieve state-of-the-art performance in most cases and demonstrate that the attributes are effective for improving few-shot MPP performance. In addition, the strong generalization ability of APN is verified by conducting experiments on data from different domains.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Descoberta de Drogas/métodos , Humanos , Algoritmos , Redes Neurais de Computação
3.
J Chem Inf Model ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136669

RESUMO

Molecular Property Prediction (MPP) is vital for drug discovery, crop protection, and environmental science. Over the last decades, diverse computational techniques have been developed, from using simple physical and chemical properties and molecular fingerprints in statistical models and classical machine learning to advanced deep learning approaches. In this review, we aim to distill insights from current research on employing transformer models for MPP. We analyze the currently available models and explore key questions that arise when training and fine-tuning a transformer model for MPP. These questions encompass the choice and scale of the pretraining data, optimal architecture selections, and promising pretraining objectives. Our analysis highlights areas not yet covered in current research, inviting further exploration to enhance the field's understanding. Additionally, we address the challenges in comparing different models, emphasizing the need for standardized data splitting and robust statistical analysis.

4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990515

RESUMO

Accurate prediction of molecular properties is fundamental in drug discovery and development, providing crucial guidance for effective drug design. A critical factor in achieving accurate molecular property prediction lies in the appropriate representation of molecular structures. Presently, prevalent deep learning-based molecular representations rely on 2D structure information as the primary molecular representation, often overlooking essential three-dimensional (3D) conformational information due to the inherent limitations of 2D structures in conveying atomic spatial relationships. In this study, we propose employing the Gram matrix as a condensed representation of 3D molecular structures and for efficient pretraining objectives. Subsequently, we leverage this matrix to construct a novel molecular representation model, Pre-GTM, which inherently encapsulates 3D information. The model accurately predicts the 3D structure of a molecule by estimating the Gram matrix. Our findings demonstrate that Pre-GTM model outperforms the baseline Graphormer model and other pretrained models in the QM9 and MoleculeNet quantitative property prediction task. The integration of the Gram matrix as a condensed representation of 3D molecular structure, incorporated into the Pre-GTM model, opens up promising avenues for its potential application across various domains of molecular research, including drug design, materials science, and chemical engineering.


Assuntos
Conformação Molecular , Modelos Moleculares , Desenho de Fármacos , Aprendizado Profundo , Descoberta de Drogas , Algoritmos
5.
J Comput Biol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082155

RESUMO

The development of new drugs is a vital effort that has the potential to improve human health, well-being and life expectancy. Molecular property prediction is a crucial step in drug discovery, as it helps to identify potential therapeutic compounds. However, experimental methods for drug development can often be time-consuming and resource-intensive, with a low probability of success. To address such limitations, deep learning (DL) methods have emerged as a viable alternative due to their ability to identify high-discriminating patterns in molecular data. In particular, graph neural networks (GNNs) operate on graph-structured data to identify promising drug candidates with desirable molecular properties. These methods represent molecules as a set of node (atoms) and edge (chemical bonds) features to aggregate local information for molecular graph representation learning. Despite the availability of several GNN frameworks, each approach has its own shortcomings. Although, some GNNs may excel in certain tasks, they may not perform as well in others. In this work, we propose a hybrid approach that incorporates different graph-based methods to combine their strengths and mitigate their limitations to accurately predict molecular properties. The proposed approach consists in a multi-layered hybrid GNN architecture that integrates multiple GNN frameworks to compute graph embeddings for molecular property prediction. Furthermore, we conduct extensive experiments on multiple benchmark datasets to demonstrate that our hybrid approach significantly outperforms the state-of-the-art graph-based models. The data and code scripts to reproduce the results are available in the repository, https://github.com/pedro-quesado/HybridGNN.

6.
J Cheminform ; 16(1): 85, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049110

RESUMO

Pretrained Graph Neural Networks have been widely adopted for various molecular property prediction tasks. Despite their ability to encode structural and relational features of molecules, traditional fine-tuning of such pretrained GNNs on the target task can lead to poor generalization. To address this, we explore the adaptation of pretrained GNNs to the target task by jointly training them with multiple auxiliary tasks. This could enable the GNNs to learn both general and task-specific features, which may benefit the target task. However, a major challenge is to determine the relatedness of auxiliary tasks with the target task. To address this, we investigate multiple strategies to measure the relevance of auxiliary tasks and integrate such tasks by adaptively combining task gradients or by learning task weights via bi-level optimization. Additionally, we propose a novel gradient surgery-based approach, Rotation of Conflicting Gradients ( RCGrad ), that learns to align conflicting auxiliary task gradients through rotation. Our experiments with state-of-the-art pretrained GNNs demonstrate the efficacy of our proposed methods, with improvements of up to 7.7% over fine-tuning. This suggests that incorporating auxiliary tasks along with target task fine-tuning can be an effective way to improve the generalizability of pretrained GNNs for molecular property prediction.Scientific contributionWe introduce a novel framework for adapting pretrained GNNs to molecular tasks using auxiliary learning to address the critical issue of negative transfer. Leveraging novel gradient surgery techniques such as RCGrad , the proposed adaptation framework represents a significant departure from the dominant pretraining fine-tuning approach for molecular GNNs. Our contributions are significant for drug discovery research, especially for tasks with limited data, filling a notable gap in the efficient adaptation of pretrained models for molecular GNNs.

7.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928289

RESUMO

Graph Neural Networks have proven to be very valuable models for the solution of a wide variety of problems on molecular graphs, as well as in many other research fields involving graph-structured data. Molecules are heterogeneous graphs composed of atoms of different species. Composite graph neural networks process heterogeneous graphs with multiple-state-updating networks, each one dedicated to a particular node type. This approach allows for the extraction of information from s graph more efficiently than standard graph neural networks that distinguish node types through a one-hot encoded type of vector. We carried out extensive experimentation on eight molecular graph datasets and on a large number of both classification and regression tasks. The results we obtained clearly show that composite graph neural networks are far more efficient in this setting than standard graph neural networks.


Assuntos
Redes Neurais de Computação , Algoritmos
8.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38920342

RESUMO

Effective molecular representation learning is very important for Artificial Intelligence-driven Drug Design because it affects the accuracy and efficiency of molecular property prediction and other molecular modeling relevant tasks. However, previous molecular representation learning studies often suffer from limitations, such as over-reliance on a single molecular representation, failure to fully capture both local and global information in molecular structure, and ineffective integration of multiscale features from different molecular representations. These limitations restrict the complete and accurate representation of molecular structure and properties, ultimately impacting the accuracy of predicting molecular properties. To this end, we propose a novel multi-view molecular representation learning method called MvMRL, which can incorporate feature information from multiple molecular representations and capture both local and global information from different views well, thus improving molecular property prediction. Specifically, MvMRL consists of four parts: a multiscale CNN-SE Simplified Molecular Input Line Entry System (SMILES) learning component and a multiscale Graph Neural Network encoder to extract local feature information and global feature information from the SMILES view and the molecular graph view, respectively; a Multi-Layer Perceptron network to capture complex non-linear relationship features from the molecular fingerprint view; and a dual cross-attention component to fuse feature information on the multi-views deeply for predicting molecular properties. We evaluate the performance of MvMRL on 11 benchmark datasets, and experimental results show that MvMRL outperforms state-of-the-art methods, indicating its rationality and effectiveness in molecular property prediction. The source code of MvMRL was released in https://github.com/jedison-github/MvMRL.


Assuntos
Redes Neurais de Computação , Algoritmos , Aprendizado de Máquina , Modelos Moleculares , Desenho de Fármacos , Software , Estrutura Molecular , Inteligência Artificial
9.
Drug Discov Today ; 29(8): 104067, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925473

RESUMO

In the dynamic field of drug discovery, deep attention neural networks are revolutionizing our approach to complex data. This review explores the attention mechanism and its extended architectures, including graph attention networks (GATs), transformers, bidirectional encoder representations from transformers (BERT), generative pre-trained transformers (GPTs) and bidirectional and auto-regressive transformers (BART). Delving into their core principles and multifaceted applications, we uncover their pivotal roles in catalyzing de novo drug design, predicting intricate molecular properties and deciphering elusive drug-target interactions. Despite challenges, these attention-based architectures hold unparalleled promise to drive transformative breakthroughs and accelerate progress in pharmaceutical research.


Assuntos
Descoberta de Drogas , Redes Neurais de Computação , Descoberta de Drogas/métodos , Humanos , Desenho de Fármacos , Aprendizado Profundo
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38706318

RESUMO

Molecular property prediction faces the challenge of limited labeled data as it necessitates a series of specialized experiments to annotate target molecules. Data augmentation techniques can effectively address the issue of data scarcity. In recent years, Mixup has achieved significant success in traditional domains such as image processing. However, its application in molecular property prediction is relatively limited due to the irregular, non-Euclidean nature of graphs and the fact that minor variations in molecular structures can lead to alterations in their properties. To address these challenges, we propose a novel data augmentation method called Mix-Key tailored for molecular property prediction. Mix-Key aims to capture crucial features of molecular graphs, focusing separately on the molecular scaffolds and functional groups. By generating isomers that are relatively invariant to the scaffolds or functional groups, we effectively preserve the core information of molecules. Additionally, to capture interactive information between the scaffolds and functional groups while ensuring correlation between the original and augmented graphs, we introduce molecular fingerprint similarity and node similarity. Through these steps, Mix-Key determines the mixup ratio between the original graph and two isomers, thus generating more informative augmented molecular graphs. We extensively validate our approach on molecular datasets of different scales with several Graph Neural Network architectures. The results demonstrate that Mix-Key consistently outperforms other data augmentation methods in enhancing molecular property prediction on several datasets.


Assuntos
Algoritmos , Estrutura Molecular , Biologia Computacional/métodos , Software
11.
Interdiscip Sci ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710957

RESUMO

Molecular representation learning can preserve meaningful molecular structures as embedding vectors, which is a necessary prerequisite for molecular property prediction. Yet, learning how to accurately represent molecules remains challenging. Previous approaches to learning molecular representations in an end-to-end manner potentially suffered information loss while neglecting the utilization of molecular generative representations. To obtain rich molecular feature information, the pre-training molecular representation model utilized different molecular representations to reduce information loss caused by a single molecular representation. Therefore, we provide the MVGC, a unique multi-view generative contrastive learning pre-training model. Our pre-training framework specifically acquires knowledge of three fundamental feature representations of molecules and effectively integrates them to predict molecular properties on benchmark datasets. Comprehensive experiments on seven classification tasks and three regression tasks demonstrate that our proposed MVGC model surpasses the majority of state-of-the-art approaches. Moreover, we explore the potential of the MVGC model to learn the representation of molecules with chemical significance.

12.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38801702

RESUMO

Self-supervised learning plays an important role in molecular representation learning because labeled molecular data are usually limited in many tasks, such as chemical property prediction and virtual screening. However, most existing molecular pre-training methods focus on one modality of molecular data, and the complementary information of two important modalities, SMILES and graph, is not fully explored. In this study, we propose an effective multi-modality self-supervised learning framework for molecular SMILES and graph. Specifically, SMILES data and graph data are first tokenized so that they can be processed by a unified Transformer-based backbone network, which is trained by a masked reconstruction strategy. In addition, we introduce a specialized non-overlapping masking strategy to encourage fine-grained interaction between these two modalities. Experimental results show that our framework achieves state-of-the-art performance in a series of molecular property prediction tasks, and a detailed ablation study demonstrates efficacy of the multi-modality framework and the masking strategy.


Assuntos
Aprendizado de Máquina Supervisionado , Algoritmos , Biologia Computacional/métodos
13.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612602

RESUMO

Molecular property prediction is an important task in drug discovery, and with help of self-supervised learning methods, the performance of molecular property prediction could be improved by utilizing large-scale unlabeled dataset. In this paper, we propose a triple generative self-supervised learning method for molecular property prediction, called TGSS. Three encoders including a bi-directional long short-term memory recurrent neural network (BiLSTM), a Transformer, and a graph attention network (GAT) are used in pre-training the model using molecular sequence and graph structure data to extract molecular features. The variational auto encoder (VAE) is used for reconstructing features from the three models. In the downstream task, in order to balance the information between different molecular features, a feature fusion module is added to assign different weights to each feature. In addition, to improve the interpretability of the model, atomic similarity heat maps were introduced to demonstrate the effectiveness and rationality of molecular feature extraction. We demonstrate the accuracy of the proposed method on chemical and biological benchmark datasets by comparative experiments.


Assuntos
Benchmarking , Descoberta de Drogas , Animais , Fontes de Energia Elétrica , Estro , Aprendizado de Máquina Supervisionado
14.
Comput Biol Chem ; 109: 108023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335852

RESUMO

AI-enhanced bioinformatics and cheminformatics pivots on generating increasingly descriptive and generalized molecular representation. Accurate prediction of molecular properties needs a comprehensive description of molecular geometry. We design a novel Graph Isomorphic Network (GIN) based model integrating a three-level network structure with a dual-level pre-training approach that aligns the characteristics of molecules. In our Spatial Molecular Pre-training (SMPT) Model, the network can learn implicit geometric information in layers from lower to higher according to the dimension. Extensive evaluations against established baseline models validate the enhanced efficacy of SMPT, with notable accomplishments in classification tasks. These results emphasize the importance of spatial geometric information in molecular representation modeling and demonstrate the potential of SMPT as a valuable tool for property prediction.

15.
J Mol Graph Model ; 128: 108703, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228013

RESUMO

Molecular property prediction plays an essential role in drug discovery for identifying the candidate molecules with target properties. Deep learning models usually require sufficient labeled data to train good prediction models. However, the size of labeled data is usually small for molecular property prediction, which brings great challenges to deep learning-based molecular property prediction methods. Furthermore, the global information of molecules is critical for predicting molecular properties. Therefore, we propose INTransformer for molecular property prediction, which is a data augmentation method via contrastive learning to alleviate the limitations of the labeled molecular data while enhancing the ability to capture global information. Specifically, INTransformer consists of two identical Transformer sub-encoders to extract the molecular representation from the original SMILES and noisy SMILES respectively, while achieving the goal of data augmentation. To reduce the influence of noise, we use contrastive learning to ensure the molecular encoding of noisy SMILES is consistent with that of the original input so that the molecular representation information can be better extracted by INTransformer. Experiments on various benchmark datasets show that INTransformer achieved competitive performance for molecular property prediction tasks compared with the baselines and state-of-the-art methods.


Assuntos
Descoberta de Drogas , Fontes de Energia Elétrica , Bases de Dados Factuais
16.
J Cheminform ; 16(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173009

RESUMO

The prediction of molecular properties is a crucial aspect in drug discovery that can save a lot of money and time during the drug design process. The use of machine learning methods to predict molecular properties has become increasingly popular in recent years. Despite advancements in the field, several challenges remain that need to be addressed, like finding an optimal pre-training procedure to improve performance on small datasets, which are common in drug discovery. In our paper, we tackle these problems by introducing Relative Molecule Self-Attention Transformer for molecular representation learning. It is a novel architecture that uses relative self-attention and 3D molecular representation to capture the interactions between atoms and bonds that enrich the backbone model with domain-specific inductive biases. Furthermore, our two-step pretraining procedure allows us to tune only a few hyperparameter values to achieve good performance comparable with state-of-the-art models on a wide selection of downstream tasks.

17.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276570

RESUMO

Existing formats based on the simplified molecular input line entry system (SMILES) encoding and molecular graph structure are designed to encode the complete semantic and structural information of molecules. However, the physicochemical properties of molecules are complex, and a single encoding of molecular features from SMILES sequences or molecular graph structures cannot adequately represent molecular information. Aiming to address this problem, this study proposes a sequence graph cross-attention (SG-ATT) representation architecture for a molecular property prediction model to efficiently use domain knowledge to enhance molecular graph feature encoding and combine the features of molecular SMILES sequences. The SG-ATT fuses the two-dimensional molecular features so that the current model input molecular information contains molecular structure information and semantic information. The SG-ATT was tested on nine molecular property prediction tasks. Among them, the biggest SG-ATT model performance improvement was 4.5% on the BACE dataset, and the average model performance improvement was 1.83% on the full dataset. Additionally, specific model interpretability studies were conducted to showcase the performance of the SG-ATT model on different datasets. In-depth analysis was provided through case studies of in vitro validation. Finally, network tools for molecular property prediction were developed for the use of researchers.

18.
Comput Biol Med ; 169: 107911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160501

RESUMO

Extracting expressive molecular features is essential for molecular property prediction. Sequence-based representation is a common representation of molecules, which ignores the structure information of molecules. While molecular graph representation has a weak ability in expressing the 3D structure. In this article, we try to make use of the advantages of different type representations simultaneously for molecular property prediction. Thus, we propose a fusion model named DLF-MFF, which integrates the multi-type molecular features. Specifically, we first extract four different types of features from molecular fingerprints, 2D molecular graph, 3D molecular graph and molecular image. Then, in order to learn molecular features individually, we use four essential deep learning frameworks, which correspond to four distinct molecular representations. The final molecular representation is created by integrating the four feature vectors and feeding them into prediction layer to predict molecular property. We compare DLF-MFF with 7 state-of-the-art methods on 6 benchmark datasets consisting of multiple molecular properties, the experimental results show that DLF-MFF achieves state-of-the-art performance on 6 benchmark datasets. Moreover, DLF-MFF is applied to identify potential anti-SARS-CoV-2 inhibitor from 2500 drugs. We predict probability of each drug being inferred as a 3CL protease inhibitor and also calculate the binding affinity scores between each drug and 3CL protease. The results show that DLF-MFF product better performance in the identification of anti-SARS-CoV-2 inhibitor. This work is expected to offer novel research perspectives for accurate prediction of molecular properties and provide valuable insights into drug repurposing for COVID-19.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Antivirais , Benchmarking , Reposicionamento de Medicamentos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA