Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sci Rep ; 14(1): 21064, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256504

RESUMO

Zeolite molecular sieves are potential adsorbents for wastewater treatment, characterized by high efficiency, simple process, easy regeneration, and low treatment cost. In this study, zeolite A molecular sieves were prepared using coal fly ash (CFA), which is an effective method for the utilization of CFA. The results showed that the CFA-based zeolite molecular sieves synthesized under optimized conditions exhibited excellent adsorption and removal rates (> 40%) for ammonia-nitrogen in wastewater of different concentrations and properties. The analysis of adsorption kinetics revealed that the adsorption process followed pseudo-second-order kinetics model, indicating that the adsorption of ammonia-nitrogen on zeolite is primarily controlled by chemisorption rather than physisorption. The adsorption process can be divided into two stages, with a higher adsorption rate and a smaller diffusion boundary layer thickness in the first stage, and a lower adsorption rate and an increased diffusion boundary layer thickness in the second stage. This indicates that as the adsorption proceeds, the internal diffusion resistance within the particles gradually increases, leading to a decrease in the adsorption rate until reaching equilibrium, where both the diffusion and adsorption become stable. The adsorption isotherms of ammonia-nitrogen on zeolite A conformed to the assumptions of the Langmuir model, suggesting that the adsorption mechanism primarily involves uniform monolayer adsorption on the surface without intermolecular interactions.

2.
Small ; : e2402182, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161191

RESUMO

Fe-based 2D materials exhibit rich chemical compositions and structures, which may imply many unique physical properties and promising applications. However, achieving controllable preparation of ultrathin non-layered FeS crystal on SiO2/Si substrate remains a challenge. Herein, the influence of temperature and molecular sieves is reported on the synthesis of ultrathin FeS nanosheets with a thickness as low as 2.3 nm by molecular sieves-assisted chemical vapor deposition (CVD). The grown FeS nanosheets exhibit a non-layered hexagonal NiAs structure and belong to the P63/mmc space group. The inverted symmetry broken structure is confirmed by the angle-resolved second harmonic generation (SHG) test. In particular, the 2D FeS nanosheets exhibit exceptional metallic behavior, with conductivity up to 1.63 × 106 S m-1 at 300 K for an 8 nm thick sample, which is higher than that of reported 2D metallic materials. This work provides a significant contribution to the synthesis and characterization of 2D non-layered Fe-based materials.

3.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999124

RESUMO

The mesoporous silica KIT-6 was synthesized and functionalized with 3-aminopropyltriethoxysilane (APTES) by grafting at 110 °C. The composites were prepared with three different concentrations of APTES: 20, 30 and 40 wt.%. The as-prepared samples were characterized by thermal gravimetric analysis in air and nitrogen atmosphere (TG/DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction and nitrogen adsorption-desorption. In this study, CO2 adsorption-desorption was investigated using temperature programmed desorption mass spectrometry (TPD-MS) at different temperatures. The adsorption capacity of the prepared composites is 2.23 mmol CO2/g at 40 °C and decreases to 0.95 mmol/g at 70 °C. Regarding the efficiency of the amino groups, the best result was obtained for APTES-grafted KIT-6 at 40 °C, with 0.512 mmol CO2/mmol NH2. The results showed good cyclical stability in adsorption capacities even after nine adsorption-desorption cycles.

4.
Materials (Basel) ; 17(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893866

RESUMO

This paper presents the long-term, holistic results of research into an innovative heat accumulator based on an organic phase-change material in the form of a mixture of aliphatic alkanes, molecular silica sieves, carbon recyclate and epoxy and cement matrices. The research included chemical testing of vacuum soaking of molecular silica sieves with a liquid phase-change material. The results proved an improvement in the heat storage efficiency of the heat accumulators due to the addition of carbon recyclate by 28%, while increasing the heat storage time by 134 min, and a reduction in PCM leakage due to the use of molecular silica sieves. In addition to its cognitive scientific value, another research objective of the work achieved was to obtain response functions in the form of approximating polynomials. They provide a useful, validated and verified tool to predict the physical and chemical characteristics of heat accumulators with different contents of individual components. As part of the ongoing research, technical problems related to leak-proofing assurance and matrix selection for organic phase-change materials were also solved. The solution presented is in line with the issues of efficient use of renewable energy, low-carbon and energy-efficient circular economy.

5.
Angew Chem Int Ed Engl ; 63(33): e202400688, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805343

RESUMO

Separating helium (He) and hydrogen (H2), two gases that are extremely similar in molecular size and condensation properties, presents a formidable challenge in the helium industry. The development of membranes capable of precisely differentiating between these gases is crucial for achieving large-scale, energy-efficient He/H2 separation. However, the limited selectivity of current membranes has hindered their practical application. In this study, we propose a novel approach to overcome this challenge by engineering submicroporous membranes through the fluorination of partially carbonized hollow fibers. We demonstrate that the fluorine substitution on the inner rim of the micropore walls within the carbon hollow fibers enables tunability of the microporous architecture. Furthermore, it enhances interactions between H2 molecules and the micropore walls through the polarization and hydrogen bonding induced by C-F bonds, resulting in simultaneous improvements in both He/H2 diffusivity and solubility selectivities. The fluorinated HFM-550-F-1 min membrane exhibits exceptional mixed-gas separation performance, with a binary mixed-gas He/H2 selectivity of 10.5 and a ternary mixed-gas He/(H2+CO2) selectivity of 20.8, at 40 bar feed pressure and 35 °C, surpassing all previously reported polymer-based gas separation membranes, and remarkable plasticization resistance and long-term continuous stability over 30 days.

6.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612388

RESUMO

Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In this work, we compare the confinement effect of two Mg-aluminophosphate zeotypes with distinct pore systems (the AEL framework, a one-dimensional channeled structure with elliptical pores of 6.5 Å × 4.0 Å, and the CHA framework, composed of large cavities of 6.7 Å × 10.0 Å connected by eight-ring narrower windows) for the encapsulation of 4-DASPI styryl dye (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide). The resultant hybrid systems display significantly improved photophysical features compared to 4-DASPI in solution as a result of tight confinement in both host inorganic frameworks. Molecular simulations reveal a tighter confinement of 4-DASPI in the elliptical channels of AEL, explaining its excellent photophysical properties. On the other hand, a singular arrangement of 4-DASPI dye is found when confined within the cavity-based CHA framework, where the 4-DASPI molecule spans along two adjacent cavities, with each aromatic ring sitting on these adjacent cavities and the polymethine chain residing within the narrower eight-ring window. However, despite the singularity of this host-guest arrangement, it provides less tight confinement for 4-DASPI than AEL, resulting in a slightly lower quantum yield.


Assuntos
Nanoporos , Corantes , Movimento (Física) , Extremidade Superior
7.
J Biomater Appl ; 38(9): 1000-1009, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38456269

RESUMO

Morin is an antioxidant and anticancer flavonoid, extracted from natural sources, that may exert beneficial effects for several pathologies. Despite this, the administration of morin represents a challenge due to its low aqueous solubility. Mesoporous silica materials have emerged as biocompatible tools for drug delivery, as their pore size can be modulated for maximum surface area to volume ratio. In this contribution, we evaluate the ability of iron-modified mesoporous materials, for morin loading and controlled delivery. The SBA-15 and MCM-41 sieves were synthesized and modified with iron (metal content 4.02 and 6.27 % wt, respectivily). Characterization by transmission electron microscopy, XRD and UV-Vis revealed adequate pore size and agglomerates of very small metallic nanospecies (nanoclusters), without larger iron oxide nanoparticles. FT-IR spectra confirmed the presence of silanol groups in the solid hosts, which can interact with different groups present in morin molecules. SBA-15 materials were more efficient in terms of morin loading capacity (LC) due to their larger pore diameter. LC was more than 35% for SBA-15 materials when adsorptions studies were carried out with 9 mg of drug. Antioxidant activity were assayed by using DPPH test. Free iron materials presented a significate improvement as antioxidants after morin incorporation, reaching a scavenging activity of almost a 90%. On the other hand, in iron modified mesoporous materials, the presence of morin did not affect the scavenging activity. The results could be related with the formation of a complex between the flavonoid and the iron. Finally, biosafety studies using normal epithelial cells revealed that neither the loaded nor the unloaded materials exerted toxicity, even at doses of 1 mg/ml. These findings expand knowledge about mesoporous materials as suitable carriers of flavonoids with the aim of improving therapies for a wide range of pathologies.


Assuntos
Flavonas , Flavonoides , Neoplasias , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Flavonoides/química , Dióxido de Silício/química , Antioxidantes/química , Ferro , Porosidade
8.
J Colloid Interface Sci ; 663: 541-553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428112

RESUMO

The CO oxidation catalytic activity of catalysts is strongly influenced by the oxygen vacancy defects (OVDs) concentration and the valence state of active metal. Herein, a defect engineering approach was implemented to enhance the oxygen vacancy defects and to modify the valence of metal ions in manganese oxide octahedral molecular sieves (OMS-2) by the introduction of copper (Cu). The characterization and theoretical calculation results reveal that the incorporation of Cu2+ ion into the OMS-2 structure led to a rise in specific surface area and pore volume, weakening of Mn-O bonds, higher proportion of the low-coordinated oxygen species adsorbed in oxygen vacancies (Oads) and an increase in the average oxidation state of manganese. These structural modifications were discovered to considerably reduce the apparent activation energy (Ea), thus ultimately significantly enhancing the CO oxidation activity (T99 at 148 ℃at GHSV = 13,200 h-1) than the original OMS-2 (T99 = 215 ℃ at GHSV = 13,200 h-1). Furthermore, In-situ diffuse reflectance infrared Fourier transform (DRIFT) and In-situ near-ambient pressure X-ray photoelectron spectroscopy (in situ NAP-XPS) results indicate that the bimetallic synergy enhanced by doping strategy accelerates the conversion of oxygen to chemisorbed oxygen species and the reaction rate of CO oxidation through Mn3++Cu2+↔Mn4++Cu+ redox cycle. The findings of this study offer novel perspectives on the design of catalysts with exceptional performance in CO oxidation.

9.
Angew Chem Int Ed Engl ; 63(8): e202317864, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38189768

RESUMO

Nanoparticles can suppress asymmetric precursor support collapse during pyrolysis to create carbon molecular sieve (CMS) membranes. This advance allows elimination of standard sol-gel support stabilization steps. Here we report a simple but surprisingly important thermal soaking step at 400 °C in the pyrolysis process to obtain high performance CMS membranes. The composite CMS membranes show CO2 /CH4 (50 : 50) mixed gas feed with an attractive CO2 /CH4 selectivity of 134.2 and CO2 permeance of 71 GPU at 35 °C. Furthermore, a H2 /CH4 selectivity of 663 with H2 permeance of 240 GPU was achieved for promising green energy resource-H2 separation processes.

10.
Heliyon ; 9(11): e22403, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045216

RESUMO

The Low utilization and high cost of platinum counter electrode (CE) in the application of dye-sensitized solar cells has limited its large-scale manufacturing in the industry. Herein, a facile pyrolysis combination of Pt and SBA-15 molecular sieve (MS) formed 1.6-1.9 times higher amount and 2-3 times reduced dimension of Pt distributed within porous structure of SBA-15. The composite CE with 20 % of SBA-15 exhibited an enhanced power conversion efficiency of 9.31 %, exceeding that of absolute Pt CE (7.57 %). This superior performance owed to the promoted oxidation-reduction rate of I3-/I- pairs at the CE interface and the increased conductivity of CE materials attributed from well distributed Pt particles. This work has demonstrated the significance of utilizing porous molecular sieves for dispersing catalytic sites when designing a novel type of counter electrode and their application in DSSCs.

11.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959732

RESUMO

The present work concerns proton-conducting composites obtained by replacing the water molecules present in aluminophosphate and silicoaluminophosphate AFI-type molecular sieves (AlPO-5 and SAPO-5) with azole molecules (imidazole or 1,2,4-triazole). Both the introduction of azoles and the generation of Brønsted acid centers by isomorphous substitution in aluminophosphate materials were aimed at improving the proton conductivity of the materials and its stability. In the presented study, AlPO-5 and several SAPO-5 materials differing in silicon content were synthesized. The obtained porous matrices were studied using PXRD, low-temperature nitrogen sorption, TPD-NH3, FTIR, and SEM. The proton conductivity of composites was measured using impedance spectroscopy. The results show that the increase in silicon content of the porous matrices is accompanied by an increase in their acidity. However, this does not translate into an increase in the conductivity of the azole composites. Triazole composites show lower conductivity and significantly higher activation energies than imidazole composites; however, most triazole composites show much higher stability. The different conductivity values for imidazole and triazole composites may be due to differences in chemical properties of the azoles.

12.
Materials (Basel) ; 16(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37445169

RESUMO

In this paper, the sorption of NH3, H2O, SO2 and CO2 was tested for several selected inorganic materials. The tests were performed on samples belonging to two topologies of materials, faujasite (FAU) and framework-type MFI, the structures of which differ in pore size and connectivity. All sorbates are important in terms of reducing their emissions to the environment. They have different chemical nature: basic, alkaline, and acidic. They are all polar in structure and composition and two of them (ammonia and water vapor) can form hydrogen bonds. These differences result in different interactions with the surface of the adsorbents. This paper presents experimental data and proposes a mathematical description of the sorption process. The best fit of the experimental data was obtained for the Toth and GAB models. The studies showed that among the selected samples, faujasite has the best sorption capacity for ammonia and water vapor, while the best sorbent for sulfur dioxide is the MFI framework type. These materials behave like molecular sieves and can be used for quite selective adsorption of relevant gases. In addition, modification of the faujasite with organic silane resulted in a drastic reduction in the surface area of the sorbent, resulting in significantly lower sorption capacities for gases.

13.
J Hazard Mater ; 457: 131784, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315415

RESUMO

Efficient removal of heavy metal pollutants from wastewater by ion-exchange sorbents requires knowledge and understanding of the interplay between the adsorption patterns of the different components. The present study elucidates the simultaneous adsorption characteristics of six toxic heavy metal cations (Cd2+, Cr3+, Cu2+, Ni2+, Pb2+, and Zn2+) by two synthetic (13X and 4 A) and one natural (clinoptilolite) zeolite from solutions containing equimolar mixtures of the six metals. Equilibrium adsorption isotherms and equilibration dynamics were obtained by ICP-OES and complemented by EDXRF. An order of magnitude lower adsorption efficiency was exhibited by clinoptilolite (maximum of 0.12 mmol ions/g zeolite), relative to that obtained by the synthetic zeolites 13X and 4 A (a maximum of 2.9 and 1.65 mmol ions/g zeolite respectively). The strongest affinities to both zeolites were demonstrated by Pb2+ and Cr3+ (1.5 and 0.85 mmol/g zeolite respectively for 13X, and 0.8 and 0.4 mmol/g zeolite respectively for 4 A adsorbed from the highest solution concentration). The weakest affinities were observed by Cd2+ (0.1 mmol/g for both zeolites), Ni2+ (0.2 and 0.1 mmol/g for 13X and 4 A respectively), and Zn2+ (0.1 mmol/g for both zeolites). Large differences were observed between the two synthetic zeolites in terms of their equilibration dynamics and adsorption isotherms. Pronounced maxima were displayed in the adsorption isotherms for zeolites 13X and 4 A. The decline in adsorption of the weaker adsorbing ions with the increase in total solution concentration was attributed to the thermodynamic equilibrium between the ions adsorbed on the zeolite surface and those in the solution. Regeneration by 3 M KCL eluting solution resulted in considerable reduction in adsorption capacities following each desorption cycle.

14.
Materials (Basel) ; 16(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37297030

RESUMO

In this study, a ZSM-5/CLCA molecular sieve was prepared by the hydrothermal method using coal gangue as the raw material and cellulose aerogel (CLCA) as the green templating agent, which not only reduces the cost of traditional molecular preparation but also improves the comprehensive resource utilization rate of coal gangue. Through a series of characterization methods (XRD, SEM, FT-IR, TEM, TG, and BET), the crystal form, morphology, and specific surface area of the prepared sample were tested and analyzed. The performance of the adsorption process of malachite green (MG) solution was analyzed by adsorption kinetics and adsorption isotherm. The results show that the synthesized zeolite molecular sieve and the commercial zeolite molecular sieve are highly consistent. At a crystallization time of 16 h, a crystallization temperature of 180 °C, and an additive amount of cellulose aerogel of 0.6 g, the adsorption capacity of ZSM-5/CLCA for MG was up to 136.5 mg/g, much higher than that of commercially available ZSM-5. This provides an idea for the green preparation of gangue-based zeolite molecular sieves to remove organic pollutants from water. Moreover, the process of adsorbing MG on the multistage porous molecular sieve, which is spontaneous, conforms to the pseudo-second-order kinetic equation and Langmuir isothermal adsorption model.

15.
ChemSusChem ; 16(19): e202300421, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37338003

RESUMO

A trace amount of water is typically unavoidable as an impurity in ionic liquids, which is a huge challenge for their application in Mg-ion batteries. Here, we employed molecular sieves of different pore diameters (3, 4, and 5 Å), to effectively remove the trace amounts of water from 1-methyl-1-propylpiperidinium bis(trifluoromethylsulfonyl)imide (MPPip-TFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-TFSI). Notably, after sieving (water content <1 mg ⋅ L-1 ), new anodic peaks arise that are attributed to the formation of different anion-cation structures induced by minimizing the influence of hydrogen bonds. Furthermore, electrochemical impedance spectroscopy (EIS) reveals that the electrolyte resistance decreases by ∼10 % for MPPip-TFSI and by ∼28 % for BMP-TFSI after sieving. The electrochemical Mg deposition/dissolution is investigated in MPPip-TFSI/tetraglyme (1 : 1)+100 mM Mg(TFSI)2 +10 mM Mg(BH4 )2 using Ag/AgCl and Mg reference electrodes. The presence of a trace amount of water leads to a considerable shift of 0.9 V vs. Mg2+/ Mg in the overpotential of Mg deposition. In contrast, drying of MPPip-TFSI enhances the reversibility of Mg deposition/dissolution and suppresses the passivation of the Mg electrode.

16.
Front Med (Lausanne) ; 10: 1147373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181347

RESUMO

Medical-grade oxygen is the basic need for all medical complications, especially in respiratory-based discomforts. There was a drastic increase in the demand for medical-grade oxygen during the current pandemic. The non-availability of medical-grade oxygen led to several complications, including death. The oxygen concentrator was only the last hope for the patient during COVID-19 pandemic around the globe. The demands also are everlasting during other microbial respiratory infections. The yield of oxygen using conventional molecular zeolites in the traditional oxygen concentrator process is less than the yield noticed when its nano-form is used. Nanotechnology has enlightened hope for the efficient production of oxygen by such oxygen concentrators. Here in the current review work, the authors have highlighted the basic structural features of oxygen concentrators along with the current working principle. Besides, it has been tried to bridge the gap between conventional oxygen concentrators and advanced ones by using nanotechnology. Nanoparticles being usually within 100 nm in size have a high surface area to volume ratio, which makes them suitable adsorbents for oxygen. Here authors have suggested the use of nano zeolite in place of molecular zeolites in the oxygen concentrator for efficient delivery of oxygen by the oxygen concentrators.

17.
Angew Chem Int Ed Engl ; 62(27): e202303915, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37162173

RESUMO

Carbon molecular sieve (CMS) membranes are attractive candidates to meet requirements for challenging gas separations. The added ability to maintain such intrinsic properties in an asymmetric morphology with a structure that we term a "Pseudo Wheel+Hub & Spoke" asymmetric form offers new opportunities. For CMS membrane, specifically, the structure provides both selective layer support and low flow resistance even for high feed pressures and fluxes in CO2 removal from natural gas. This capability is unavailable to even rigid glassy polymers due to the much higher modulus of CMS materials. Combining precursor asymmetric hollow fiber formation and optimized pyrolysis creates a defect free CMS proof-of-concept membrane for this application. Facile formation of the sheath-core spun precursor with a 6FDA-DAM sheath and Matrimid® core also avoids the need to seal defects before or after the carbonization of the precursors. The composite CMS membrane shows CO2 /CH4 (50 : 50) mixed gas feed with an attractive CO2 /CH4 selectivity of 64.3 and CO2 permeance of 232 GPU at 35 °C. A key additional benefit of the approach is reduction in use of the more costly high performance 6FDA-DAM in a composite sheath-core CMS membrane with the "Pseudo Wheel+Hub & Spoke" structure.

18.
J Environ Sci (China) ; 125: 112-134, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375898

RESUMO

As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds (VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been viewed as an efficient, economically feasible and environmentally friendly way for the elimination of VOCs. Supported metal catalyst is the preferred type of catalysts applied for VOCs catalytic combustion because of the synergy between active components and support as well as its flexibility in the composition. The presence of support not only plays the role of keeping the catalyst with good stability and mechanical strength, but also provides a large specific surface for the good dispersion of active components, which could effectively improve the performance of catalyst as well as decrease the usage of active components, especially the noble metal amount. Mesoporous molecular sieves, owing to their large surface area, unique porous structures, large pore size as well as uniform pore-size distribution, were viewed as superior support for dispersing active components. This review focuses on the recent development of mesoporous molecular sieve supported metal catalysts and their application in catalytic oxidation of VOCs. The effect of active component types, support structure, preparation method, precursors, etc. on the valence state, dispersion as well as the loading of active species were also discussed and summarized. Moreover, the corresponding conversion route of VOCs was also addressed. This review aims to provide some enlightment for designing the supported metal catalysts with superior activity and stability for VOCs removal.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/química , Catálise , Oxirredução , Material Particulado , Metais
19.
ACS Nano ; 16(12): 21618-21625, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36521057

RESUMO

Octahedral molecular sieves (OMSs) based on MnO2 have been widely studied in the fields of deionization, geochemistry, and energy storage due to their microporous tunnel framework capable of adsorbing and exchanging various ions, particularly cations. The understanding of cation adsorption/exchange within OMS tunnels demands atomic-scale exploration, which has been scarcely reported. Here, we disclose how various cations (K+/Ag+/Na+) interplay within the OMS tunnel space on an atomic scale. Not only are the lattice sites for each adsorbed cation species pinpointed but the scenario of dual-cation adsorption within single tunnels is also demonstrated, together with the discovery of characteristic concentration-dependent cation ordering. Moreover, compared with the theoretical parent tunnel phase, the heterogeneous tunnels, though sparsely distributed, exhibit a distinct yet orderly cationic accommodation, highlighting the non-negligible role of tunnel heterogeneity in regulating OMS physiochemistry. Our findings clarify the long-existing ambiguities in nano- and atomic-scale science of the ion adsorption process in OMS materials and are expected to inspire their structural/compositional engineering toward functionality enhancement in various fields.

20.
Se Pu ; 40(10): 937-943, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36222257

RESUMO

Emerging pollutants (EPs) are chemical substances that are commonly not regulated and can be detected at low or very low concentrations. However, EPs have triggered special concern because their long-term adverse effects on the environment and human health remain unknown. Most EPs show biological toxicity, environmental persistence, and bioaccumulation. Even at low concentrations in the environment, EPs may pose significant environmental and health risks. Therefore, their treatment has been explicitly included in the 14th Five Year Plan for National Economic and Social Development of the People's Republic of China and the Outline of the Long-term Goals for 2035. Soil is a source of pollutants, and its quality is directly related to economic development, ecological security, and people's livelihood. At present, China's soil environmental monitoring system is not perfect, and the ability to monitor these new organic pollutants is lagging. Therefore, to strengthen the supervision of construction and agricultural land soil environments, it is essential to strengthen the soil environment monitoring ability for these EPs and establish a reliable, steady, and economic analysis method, including their separation and analysis methods in soil. Polychlorinated naphthalenes (PCNs) have received considerable attention as emerging halogenated compounds. They were listed in Annexes A and C of the Stockholm Convention on persistent organic pollutants (POPs) in 2015 because of their persistence, multimedia fate, and toxicity. PCNs have now been detected in the surrounding soils. Owing to their trace levels in complex soil, high requirements have been put forward for the pretreatment and instrument analysis of PCNs. This study aims to develop a new method for the selective purification of PCNs in soil, which can not only effectively remove lipids and other interferences in soil but also effectively reduce time, labor, and material costs in the pre-treatment process. Based on the physicochemical properties of the 13X molecular sieve, it was explored to purify soil-extracts as solid-phase extraction (SPE) sorbents. With n-hexane as the loading and rinsing solvent, 10 mL of a dichloromethane/n-hexane mixture (2∶15, v/v) was used to elute the PCNs. Moreover, selective separation of target substances from lipid macromolecules and other interferences could be achieved simultaneously. For the selective separation of PCNs, the average recovery of the internal standard could reach 56.1% to 88.0%. 13X molecular sieves are superior to gel permeation chromatography (GPC) and Florisil SPE, and they exhibit good cleanup efficiency similar to a multilayer silica gel/alumina column (53.0%-117.0%). Although the obtained recoveries are not as high as those obtained with a multilayer silica gel/alumina column, 13X molecular sieves have advantages in terms of simple operation, environmental friendliness, and low cost. Based on these fundamental experiments, accelerated solvent extraction was used to extract targets in soil, molecular sieves were used as SPE sorbents for purification, and GC-MS/MS was employed for PCN analysis. This method was developed as a systematic analytical method for PCNs determination. The method detection limits (MDLs) for PCN homologs were in the range of 0.009-0.6 ng/g. The precision and accuracy of the method were evaluated using spiked matrices. At three spiked levels (4, 10, and 18 ng), the recoveries of PCNs (CN-3, 13, 42, 46, 52, 53, 73, and 75) were 70%-128%, 71%-115%, and 61%-114%, respectively, and the corresponding relative standard derivations were 4.2%-23%, 6.5%-31% and 4.7%-22%. Thus, this method meets the requirements of trace analysis and shows acceptable parallelism, sensitivity, accuracy, and precision, thus being feasible for the analysis of emerging pollutant. The method is expected to play an important role in sample pretreatment in the future, especially for the nationwide investigation of soil pollution.


Assuntos
Poluentes Ambientais , Solo , Humanos , Óxido de Alumínio , Poluentes Ambientais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hexanos , Lipídeos , Cloreto de Metileno/análise , Naftalenos/análise , Poluentes Orgânicos Persistentes , Sílica Gel , Extração em Fase Sólida , Solventes/análise , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA