Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chemphyschem ; 25(17): e202400435, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38775747

RESUMO

Buckybowl tweezers are a relatively young research area closely associated with the development of non-planar polycyclic aromatic systems and supramolecular chemistry. Since the appearance of the first prototypes in the early 2000s, the tweezers have undergone evolutionary changes. Nowadays they are able to effectively interact with fullerenes and the results opened up prospects for development in the field of sensing, nonlinear optics, and molecular switchers. In the present study, examples of corannulene-based and other buckybowl tweezers for the recognition of C60 and C70 fullerenes were summarized and analyzed. The main structural components of the tweezers were also reviewed in detail and their role in the formation of complexes with fullerenes was evaluated. The revealed structural patterns should trigger the development of novel recognition systems and materials with a wide range of applications.

2.
Chemistry ; 30(44): e202401866, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780863

RESUMO

Protonated and methylated bis-acridinium tweezers built around a 2,6-diphenylpyridyl and an electron enriched 2,6-di(p-anisyl)pyridyl spacer have been synthesized. These tweezers can self-assemble in their corresponding homodimers and the associated thermodynamic parameters have been probed in organic solvents. The switching properties of the tweezers have been exploited in biphasic transfer experiments showing the shift of the equilibria towards the homodimers. Moreover, the thermodynamic parameters of the formation of the reduced methylated homodimers investigated by electrochemical experiments revealed the dissociation of the dimers. Thus, in addition to solvent and temperature, the pH and redox responsiveness of the acridinium units of the tweezers make it possible to modulate to a larger extent the monomer-dimer equilibria.

3.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675584

RESUMO

To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.


Assuntos
Ligação Proteica , Cristalografia por Raios X , Ligantes , Humanos , Modelos Moleculares , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Sítios de Ligação , Proteínas/química , Conformação Proteica
4.
Int J Biol Macromol ; 257(Pt 1): 128646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061507

RESUMO

Arginine shows Jekyll and Hyde behavior in several respects. It participates in protein folding via ionic and H-bonds and cation-pi interactions; the charge and hydrophobicity of its side chain make it a disorder-promoting amino acid. Its methylation in histones; RNA binding proteins; chaperones regulates several cellular processes. The arginine-centric modifications are important in oncogenesis and as biomarkers in several cardiovascular diseases. The cross-links involving arginine in collagen and cornea are involved in pathogenesis of tissues but have also been useful in tissue engineering and wound-dressing materials. Arginine is a part of active site of several enzymes such as GTPases, peroxidases, and sulfotransferases. Its metabolic importance is obvious as it is involved in production of urea, NO, ornithine and citrulline. It can form unusual functional structures such as molecular tweezers in vitro and sprockets which engage DNA chains as part of histones in vivo. It has been used in design of cell-penetrating peptides as drugs. Arginine has been used as an excipient in both solid and injectable drug formulations; its role in suppressing opalescence due to liquid-liquid phase separation is particularly very promising. It has been known as a suppressor of protein aggregation during protein refolding. It has proved its usefulness in protein bioseparation processes like ion-exchange, hydrophobic and affinity chromatographies. Arginine is an amino acid, whose importance in biological sciences and biotechnology continues to grow in diverse ways.


Assuntos
Arginina , Peptídeos Penetradores de Células , Arginina/química , Histonas/metabolismo , DNA/química , Peptídeos Penetradores de Células/metabolismo , Citrulina
5.
Bioorg Med Chem ; 81: 117211, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36809721

RESUMO

Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.


Assuntos
Neoplasias , Proteínas , Humanos , Proteínas/química , Neoplasias/tratamento farmacológico , Carcinogênese
6.
Chemistry ; 26(58): 13288-13294, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32583576

RESUMO

The design and synthesis of a tweezer-shaped naphthalenediimide (NDI)-anthracene conjugate (2NDI) are reported. In the structure of the closed form (πNDI ⋅⋅⋅πNDI stack) of 2NDI, which was elucidated by single-crystal XRD, the existence of C-H⋅⋅⋅O hydrogen bonding involving the nearest carbonyl oxygen atom of an NDI unit was suggested. The tunability of πNDI ⋅⋅⋅πNDI interactions was studied by means of UV/Vis absorption, fluorescence and NMR spectroscopy and molecular modelling. This revealed that the πNDI ⋅⋅⋅πNDI interactions in 2NDI affect the absorption and emission properties depending on the temperature. Furthermore, in polar solvents, 2NDI prefers the stronger πNDI ⋅⋅⋅πNDI stack, whereas the πNDI ⋅⋅⋅πNDI interaction is diminished in nonpolar solvents. Importantly, the conformational variations of 2NDI can be reversibly switched by variation in temperature, and this suggests potential application for fluorogenic molecular switches upon temperature changes.

7.
Chempluschem ; 85(3): 548-560, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32202393

RESUMO

The thermodynamic stability of 1 : 1 and 2 : 1 boron-nitrogen (B←N) adducts formed between aromatic boronic esters with mono- and diamines was studied in solution by NMR and UV-vis spectroscopy with association energies (ΔG°) ranging from -11 to -28 kJ mol-1 . The effect of different substituents in the boronic ester, the nature of the diamine linker, and the effect of the solvent was explored. Stable 2 : 1 B←N adducts with diamines such as 1,3-diaminopropane were produced in solutions of hydrogen-bonding acceptor solvents (acetonitrile and ethyl acetate), which can be isolated in the solid state as crystalline solvates, whereas the use of noncoordinating solvents such as 1,2-dichloroethane afforded mainly 1 : 1 B←N adducts. In suitable combinations, aromatic bis-pyridyl diamines produced stable 2 : 1 B←N adducts that were isolated either as solvent-free solids, solvates, or cocrystals. In these crystalline forms, double-tweezer hosts were observed with an exceptional syn/anti conformational guest-adaptability driven by simultaneous donor-acceptor and C-H⋅⋅⋅π interactions in the tweezer cavities, resembling preorganized covalent tweezer hosts. Interestingly, cocrystals with electron-rich guests such as tetrathiafulvalene and pyrene showed non-centrosymmetric crystal lattices with infinite π-stacked donor-acceptor columns.

8.
J Mol Model ; 26(2): 39, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32008144

RESUMO

A novel zinc(II)-salphen-azo-benzo-15-crown-5 triad receptor was studied theoretically as ditopic recognition of hydrophobic amino acid. And density functional theory was used to investigate the Zn(II) salphen-crown ether complex (L1), complex L2 (L1 with the alkaline metal cation Na+), and the corresponding 1:1 sandwich complex (complex L with tryptophan). In this work, geometrical optimization was carried out using ωB97XD functional and def2-SVP basis set for all atoms. The absorption spectra and excited-states were calculated using time-dependent density functional theory and ωB97XD/def2-TZVP level. The absorption spectra data show some significantly shifts in the absorption band due to the present of Na+ or tryptophan. In addition, interfragment interactions between receptor L and tryptophan were analyzed in detail by Independent Gradient Model and topological properties of Bader's atoms in molecules theory, which is found to contribute to forming the metal-ligand bonds, intermolecular H-bond, and van der Waals interaction in 1:1 sandwich complex. The above results demonstrate that the L2 complex is a ditopic receptor to be utilized to recognize amphiphilic molecule - tryptophan.


Assuntos
Éteres de Coroa/química , Modelos Moleculares , Fenilenodiaminas/química , Triptofano/química , Zinco/química
9.
Mol Ther ; 28(4): 1167-1176, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32087148

RESUMO

Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid ß progressively aggregate in the brain. The amyloid deposits mostly build up in neuronal cell bodies concomitantly with neurodegeneration. Treating MPS-IIIA mice with CLR01, a "molecular tweezer" that acts as a broad-spectrum inhibitor of amyloid protein self-assembly reduced lysosomal enlargement and re-activates autophagy flux. Restoration of the ALP was associated with reduced neuroinflammation and amelioration of memory deficits. Together, these data provide evidence that brain deposition of amyloid proteins plays a gain of neurotoxic function in a severe LSD by affecting the ALP and identify CLR01 as new potent drug candidate for MPS-IIIA and likely for other LSDs.


Assuntos
Autofagia/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Mucopolissacaridose III/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Organofosfatos/administração & dosagem , Amiloide/antagonistas & inibidores , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Corpo Celular/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Mucopolissacaridose III/complicações , Mucopolissacaridose III/metabolismo , Doenças Neurodegenerativas/etiologia , Organofosfatos/farmacologia , Resultado do Tratamento
10.
Chemistry ; 26(2): 558-563, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31692129

RESUMO

By taking advantage of self-complementary π-π stacking and CH-π interactions, a series of discrete quadruple stacks were constructed through the self-aggregation of U-shaped dirhodium metallotweezer complexes featuring various planar polyaromatic ligands. By altering the conjugate stacking strength and bridging ligands, assemblies with a range of topologies were obtained, including a binuclear D-shaped macrocycle, tetranuclear open-ended cagelike frameworks, and duplex metallotweezer stacking structures. Furthermore, a rare stacking interaction resulting in selective C-H activation was observed during the self-assembly process of these elaborate architectures.

11.
Angew Chem Int Ed Engl ; 59(2): 716-720, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31670452

RESUMO

Developing methodologies for on-demand control of the release of a molecular guest requires the rational design of stimuli-responsive hosts with functional cavities. While a substantial number of responsive metallacages have already been described, the case of coordination-tweezers has been less explored. Herein, we report the first example of a redox-triggered guest release from a metalla-assembled tweezer. This tweezer incorporates two redox-active panels constructed from the electron-rich 9-(1,3-dithiol-2-ylidene)fluorene unit that are facing each other. It dimerizes spontaneously in solution and the resulting interpenetrated supramolecular structure can dissociate in the presence of an electron-poor planar unit, forming a 1:1 host-guest complex. This complex dissociates upon tweezer oxidation/dimerization, offering an original redox-triggered molecular delivery pathway.

12.
Chemistry ; 26(11): 2405-2416, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31697426

RESUMO

Connecting two porphyrin units in a rigid linear fashion, without any undesired electron delocalization or communication between the chromophores, remains a synthetic challenge. Herein, a broad library of functionally diverse multi-porphyrin arrays that incorporate the non-traditional rigid linker groups cubane and bicyclo[1.1.1]pentane (BCP) is described. A robust, reliable, and versatile synthetic procedure was employed to access porphyrin-cubane/BCP-porphyrin arrays, representing the largest non-polymeric structures available for cubane/BCP derivatives. These reactions demonstrate considerable substrate scope, from utilization of small phenyl moieties to large porphyrin rings, with varying lengths and different angles. To control conformational flexibility, amide bonds were introduced between the bridgehead carbon of BCP/cubane and the porphyrin rings. Through varying the orientation of the substituents around the amide bond of cubane/BCP, different intermolecular interactions were identified through single crystal X-ray analysis. These studies revealed non-covalent interactions that are the first-of-their-kind including a unique iodine-oxygen interaction between cubane units. These supramolecular architectures indicate the possibility to mimic a protein structure due to the sp3 rigid scaffolds (BCP or cubane) that exhibit the essential conformational space for protein function while simultaneously providing amide bonds for molecular recognition.

13.
Front Chem ; 7: 657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632951

RESUMO

Molecular tweezers (MTs) are supramolecular host molecules equipped with two aromatic pincers linked together by a spacer (Gakh, 2018). They are endowed with fascinating properties originating from their ability to hold guests between their aromatic pincers (Chen and Whitlock, 1978; Zimmerman, 1991; Harmata, 2004). MTs are finding an increasing number of medicinal applications, e.g., as bis-intercalators for DNA such as the anticancer drug Ditercalinium (Gao et al., 1991), drug activity reverters such as the bisglycoluril tweezers Calabadion 1 (Ma et al., 2012) as well as radioimmuno detectors such as Venus flytrap clusters (Paxton et al., 1991). We recently embarked on a program to create water-soluble tweezers which selectively bind the side chains of lysine and arginine inside their cavity. This unique recognition mode is enabled by a torus-shaped, polycyclic framework, which is equipped with two hydrophilic phosphate groups. Cationic amino acid residues are bound by the synergistic effect of disperse, hydrophobic, and electrostatic interactions in a kinetically fast reversible process. Interactions of the same kind play a key role in numerous protein-protein interactions, as well as in pathologic protein aggregation. Therefore, these particular MTs show a high potential to disrupt such events, and indeed inhibit misfolding and self-assembly of amyloidogenic polypeptides without toxic side effects. The mini-review provides insight into the unique binding mode of MTs both toward peptides and aggregating proteins. It presents the synthesis of the lead compound CLR01 and its control, CLR03. Different biophysical experiments are explained which elucidate and help to better understand their mechanism of action. Specifically, we show how toxic aggregates of oligomeric and fibrillar protein species are dissolved and redirected to form amorphous, benign assemblies. Importantly, these new chemical tools are shown to be essentially non-toxic in vivo. Due to their reversible moderately tight binding, these agents are not protein-, but rather process-specific, which suggests a broad range of applications in protein misfolding events. Thus, MTs are highly promising candidates for disease-modifying therapy in early stages of neurodegenerative diseases. This is an outstanding example in the evolution of supramolecular concepts toward biological application.

14.
Chemistry ; 25(56): 12900-12904, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31348566

RESUMO

A molecular tweezer based on a glycoluril-derived framework bearing four phosphate groups was synthesized and shown to be capable of binding organic amines in aqueous solution. This work reports the Ka values for 30 complexes of this molecular tweezer and amine guests, determined by means of 1 H NMR titrations. Both the hydrophobic cavity and the phosphate groups contribute to the binding. Bulkier molecules and molecules bearing negatively charged groups like carboxylates in amino acids bind less tightly due to a steric clash and coulombic repulsion. The narrow cavity and the strong ionic interactions of the phosphate groups with ammonium guests favor binding of aliphatic diamines. These binding properties clearly distinguish this system from structurally related molecular clips and tweezers.

15.
Chemistry ; 25(42): 9827-9833, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31141233

RESUMO

Oncogenic Ras mutations occur in more than 30 % of human cancers. K-Ras4B is the most frequently mutated isoform of Ras proteins. Development of effective K-Ras4B inhibitors has been challenging, hence new approaches to inhibit this oncogenic protein are urgently required. The polybasic domain of K-Ras4B with its stretch of lysine residues is essential for its plasma membrane targeting and localization. Employing CD and fluorescence spectroscopy, confocal fluorescence, and atomic force microscopy we show that the molecular tweezer CLR01 is able to efficiently bind to the lysine stretch in the polybasic domain of K-Ras4B, resulting in dissociation of the K-Ras4B protein from the lipid membrane and disintegration of K-Ras4B nanoclusters in the lipid bilayer. These results suggest that targeting of the polybasic domain of K-Ras4B by properly designed tweezers might represent an effective strategy for inactivation of K-Ras4B signaling.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Organofosfatos/química , Proteínas Proto-Oncogênicas p21(ras)/química , Simulação por Computador , Humanos , Mutação , Nanoestruturas/química , Conformação Proteica , Termodinâmica
16.
Molecules ; 24(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075983

RESUMO

Synthetic acyclic receptors, composed of two arms connected with a spacer enabling molecular recognition, have been intensively explored in host-guest chemistry in the past decades. They fall into the categories of molecular tweezers, clefts and clips, depending on the geometry allowing the recognition of various guests. The advances in synthesis and mechanistic studies have pushed them forward to pharmaceutical applications, such as neurodegenerative disorders, infectious diseases, cancer, cardiovascular disease, diabetes, etc. In this review, we provide a summary of the synthetic molecular tweezers, clefts and clips that have been reported for pharmaceutical applications. Their structures, mechanism of action as well as in vitro and in vivo results are described. Such receptors were found to selectively bind biological guests, namely, nucleic acids, sugars, amino acids and proteins enabling their use as biosensors or therapeutics. Particularly interesting are dynamic molecular tweezers which are capable of controlled motion in response to an external stimulus. They proved their utility as imaging agents or in the design of controlled release systems. Despite some issues, such as stability, cytotoxicity or biocompatibility that still need to be addressed, it is obvious that molecular tweezers, clefts and clips are promising candidates for several incurable diseases as therapeutic agents, diagnostic or delivery tools.


Assuntos
Indústria Farmacêutica , Conformação Molecular , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Ácidos Nucleicos/química , Expansão das Repetições de Trinucleotídeos
17.
Chemistry ; 25(27): 6673-6692, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30674065

RESUMO

Carbon nanomaterials have been at the forefront of nanotechnology since its inception. At the heart of this research are the curved carbon nanomaterial families: fullerenes and carbon nanotubes. While both have incredible properties that have been capitalized upon in a wide variety of applications, there is an aspect that is not commonly exploited by nanoscientists and organic chemists alike: the interaction of curved carbon nanomaterials with curved organic small molecules. By taking advantage of these interactions, new avenues are opened for the use of fullerenes and carbon nanotubes.

18.
Chempluschem ; 84(6): 686-693, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944003

RESUMO

Bis(bicyclic) molecules dimethanochrysene and diethanochrysene were prepared by Diels-Alder reaction of the naphthodiyne equivalent with cyclopentadiene and 1,3-cyclohexadiene, respectively. Reaction of dimethanochrysene and 7,9-diphenyl-8H-cyclopent[a]acenaphthylen-8-one resulted in the generation of a fluorescent hydrocarbon in unexpected multistep pericyclic reactions. Syn-oriented diethanochrysene-connected bisporphyrin tweezers was prepared from the reaction of chrysene-bridged syn-dipyrrole with tripyrranedicarbaldehyde. The structure of the receptor and its 1 : 1 complex with C60 or C70 was determined by X-ray diffraction analysis. The dihedral angles of the bicyclo[2.2.2]octadiene moieties were narrowed by complexation of the receptor with the fullerenes. The binding affinities of the tweezers with C60 and C70 were calculated to be 2.7(4)×104 and 8.01(7)×104  M-1 , respectively by UV-vis and fluorescence spectroscopy.

19.
Chemistry ; 24(50): 13106-13109, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30033629

RESUMO

The synthesis of a doubly-annulated m-terphenyl-based tweezer platform has been developed, which affords ready incorporation of various pincer units from monobenzenoid to polybenzenoid electron donors. The complexation study with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as guest has been carried out, and the crystal structure of T-Py∩DDQ reveals the sandwich-type binding mode in the solid state.

20.
Chemistry ; 24(44): 11332-11343, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30015416

RESUMO

A new synthetic access to molecular tweezers with one or two aliphatic phosphate ester groups in the central benzene spacer-unit is presented. Alkynyl ester groups offer the prospect to attach additional functional units by click chemistry and greatly broaden the scope of these tools for chemical biology. We present two alternative strategies: the trichloroacetonitrile method involves activation of only one OH group of each phosphoric acid substituent by way of trichloroacetimidate intermediates and subsequent introduction of an aliphatic ester alcohol moiety. The method is versatile, robust and combines simple workup with high yields. Mono- and disubstituted novel host structures are thus accessible in a convenient way. Alternatively, the phosphoramidite strategy activates the hydroquinone precursor by way of phosphoramidite intermediates and couples the desired ester alcohols followed by mild oxidation to the desired phosphate esters. Each step of the synthesis is carried out at very mild conditions and allows to combine sensitive host candidates and recognition elements. After neutralization of the phosphoric acids to water-soluble tri- and tetra-anions the cavities of the new tweezer derivatives are open to bind lysine and arginine as well as peptidic guests. The concept of introducing clickable alkynyl phosphates to free OH groups may be transferred to other major macrocyclic host classes to introduce additional recognition elements, biomolecules or fluorescence labels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA