Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202418348, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39505699

RESUMO

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters offer natural advantages for creating power-efficient, wide-color-gamut OLEDs. However, current green MR-TADF emitters face challenges in simultaneously achieving high color purity and efficient reverse inter-system crossing (RISC), leading to suboptimal device performance. In this study, we propose a synergistic molecular design approach that combines π-extension and peripheral locking to address these challenges. This approach allows for the construction of quadruple borylated MR-TADF emitters that not only deliver precisely tuned pure-green emission with a narrow full width at half maximum (FWHM) of 15 nm, but also exhibit close-to-unity quantum yield, rapid RISC, and optimal horizontal dipole orientation. The resulting sensitizer-free OLED approaches the BT.2020 standard with CIE coordinates of (0.18, 0.74) and demonstrates impressive external quantum efficiency (EQE) of 36.6% at maximum and 31.8% at 1000 cd m-2. Additionally, the device shows good operational stability, with a lifetime (LT80) of 485 hours at an initial luminance of 1000 cd m-2. This study hence offers a promising molecular design strategy that effectively enhances the comprehensive OLED performance.

2.
Angew Chem Int Ed Engl ; : e202416154, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400436

RESUMO

Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules have experienced great success in organic light-emitting diodes (OLEDs) owing to their outstanding quantum efficiencies and narrow full width at half-maximums (FWHMs). However, the reverse intersystem crossing (RISC) rates of MR-TADF emitters are usually small, which will lead to relatively long triplet exciton lifetime and severe efficiency roll-off. Here, we report an effective molecular design strategy to introduce multichannel RISC pathways and thus increase RISC rates without compromising the color fidelity and emission efficiency by the "hybridized long-short axis (HLSA)" strategy. The TPA-CN-BN shows a near-unity photoluminescence quantum yield, rapid RISC rate of 1.4 × 105 s-1, narrow FWHM of 23 nm, and small singlet-triplet energy gap (ΔEST) of 0.06 eV in solution. The non-sensitized OLED based on TPA-CN-BN exhibits a narrowband emission with the FWHM of 31 nm, in company with external quantum efficiency (EQE) of 37.9%. Notably, the device exhibits the low efficiency roll-off as the EQEs maintain 34.8% and 21.8% at 100 and 1000 cd m-2, respectively, representing the best performance for single-host OLEDs based on the BCzBN skeleton. This study provides a fresh and promising approach to realize high-performance OLEDs with high color purity and remarkable device efficiency.

3.
Angew Chem Int Ed Engl ; : e202415607, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39364649

RESUMO

Different from conventional luminescent dendrimers with fluorophore tethered outside to dendron, here we first developed endo-encapsulated luminescent dendrimers with multi-resonance (MR) fluorophore embedded inside of carbazole dendrons by growing dendrons through 1,8-positions of central carbazole moiety to create a cavity for accommodating the fluorophore. This endo-encapsulated structure not only shields the fluorophore to fully resist aggregation-caused spectral broadening, but also induce through-space interactions between dendron and fluorophore via intramolecular π-stacking, giving lowered singlet state energy and reduced singlet-triplet energy splitting to accelerate reverse intersystem crossing (RISC) from triplet to singlet states. The resultant dendrimer containing 1,8-linked second-generation carbazole dendrons and boron, sulfur-doped polycyclic MR fluorophore exhibits narrowband blue emission at 471 nm with FWHM kept at 34 nm even in neat film, together with ~4 times enhancement of RISC rate constant compared to its exo-tethered counterpart. Solution-processed OLEDs based on the endo-encapsulated dendrimer reveal efficient narrowband blue emissions with maximum external quantum efficiency of 22.6 %, representing the best device efficiency for blue-emitting multi-resonance dendrimers so far.

4.
Angew Chem Int Ed Engl ; : e202413536, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212254

RESUMO

Multi-resonance (MR) type emitters have emerged as highly promising candidates for high-resolution organic light-emitting diodes (OLEDs). However, thermally activated delayed fluorescence (TADF) emissions with simultaneous short excited state lifetimes and ultrapure blue color (a CIEy close to 0.046 and an emission peak >440 nm) have rarely been obtained for MR emitters. Herein, we report a design of dual gold-coordinated MR molecules to achieve efficient and short-lived ultrapure blue TADF emission. The dinuclear Au(I) complex, namely iPrAuBN, shows a narrowband deep-blue emission with a peak maximum of 448 nm and a full width at half maximum (FWHM) of 29 nm in doped film. The coordination with two Au atoms significantly shortens the delayed fluorescence lifetime to 7.8 µs in comparison to 60.6 µs for the parental organic analogue. Solution-processed OLED doped with iPrAuBN demonstrates an ultrapure blue electroluminescence with a peak maximum of 442 nm, a FWHM of 19 nm, CIE coordinates of (0.154, 0.036), and a maximum external quantum efficiency of 14.8 %.

5.
Angew Chem Int Ed Engl ; 63(32): e202407277, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780892

RESUMO

Chiral multi-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials hold promise for circularly polarized organic light-emitting diodes (CP-OLEDs) and 3D displays. Herein, we present two pairs of tetraborated intrinsically axial CP-MR-TADF materials, R/S-BDBF-BOH and R/S-BDBT-BOH, with conjugation-extended bidibenzo[b,d]furan and bidibenzo[b,d]thiophene as chiral sources, which effectively participate in the distribution of the frontier molecular orbitals. Due to the heavy-atom effect, sulfur atoms are introduced to accelerate the reverse intersystem crossing process and increase the efficiency of molecules. R/S-BDBF-BOH and R/S-BDBT-BOH manifest ultra-pure blue emission with a maximum at 458/459 nm with a full width at half maximum of 27 nm, photoluminescence quantum yields of 90 %/91 %, and dissymmetry factors (|gPL|) of 6.8×10-4/8.5×10-4, respectively. Correspondingly, the CP-OLEDs exhibit good performances with an external quantum efficiency of 30.1 % and |gEL| factors of 1.2×10-3.

6.
Angew Chem Int Ed Engl ; 63(16): e202401120, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38326521

RESUMO

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials hold great promise for advanced high-resolution organic light-emitting diode (OLED) displays. However, persistent challenges, such as severe aggregation-caused quenching (ACQ) and slow spin-flip, hinder their optimal performance. We propose a synergetic steric-hindrance and excited-state modulation strategy for MR-TADF emitters, which is demonstrated by two blue MR-TADF emitters, IDAD-BNCz and TIDAD-BNCz, bearing sterically demanding 8,8-diphenyl-8H-indolo[3,2,1-de]acridine (IDAD) and 3,6-di-tert-butyl-8,8-diphenyl-8H-indolo[3,2,1-de]acridine (TIDAD), respectively. These rigid and bulky IDAD/TIDAD moieties, with appropriate electron-donating capabilities, not only effectively mitigate ACQ, ensuring efficient luminescence across a broad range of dopant concentrations, but also induce high-lying charge-transfer excited states that facilitate triplet-to-singlet spin-flip without causing undesired emission redshift or spectral broadening. Consequently, implementation of a high doping level of IDAD-BNCz resulted in highly efficient narrowband electroluminescence, featuring a remarkable full-width at half-maximum of 34 nm and record-setting external quantum efficiencies of 34.3 % and 31.8 % at maximum and 100 cd m-2, respectively. The combined steric and electronic effects arising from the steric-hindered donor introduction offer a compelling molecular design strategy to overcome critical challenges in MR-TADF emitters.

7.
Angew Chem Int Ed Engl ; 63(18): e202401835, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38380835

RESUMO

The intrinsic helical π-conjugated skeleton makes helicenes highly promising for circularly polarized electroluminescence (CPEL). Generally, carbon helicenes undergo low external quantum efficiency (EQE), while the incorporation of a multi-resonance thermally activated delayed fluorescence (MR-TADF) BN structure has led to an improvement. However, the reported B,N-embedded helicenes all show low electroluminescence dissymmetry factors (gEL), typically around 1×10-3. Therefore, the development of B,N-embedded helicenes with both a high EQE and gEL value is crucial for achieving highly efficient CPEL. Herein, a facile approach to synthesize B,N-embedded hetero[9]helicenes, BN[9]H, is presented. BN[9]H shows a bright photoluminescence with a maximum at 578 nm with a high luminescence dissymmetry factor (|glum|) up to 5.8×10-3, attributed to its inherited MR-TADF property and intrinsic helical skeleton. Furthermore, circularly polarized OLED devices incorporating BN[9]H as an emitter show a maximum EQE of 35.5 %, a small full width at half-maximum of 48 nm, and, more importantly, a high |gEL| value of 6.2×10-3. The Q-factor (|EQE×gEL|) of CP-OLEDs is determined to be 2.2×10-3, which is the highest among helicene analogues. This work provides a new approach for the synthesis of higher helicenes and paves a new way for the construction of highly efficient CPEL materials.

8.
Adv Sci (Weinh) ; 11(11): e2309016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233207

RESUMO

A novel class of o-carboranyl luminophores, 2CB-BuDABNA (1) and 3CB-BuDABNA (2) is reported, in which o-carborane moieties are incorporated at the periphery of the B,N-doped multi-resonance thermally activated delayed fluorescence (MR-TADF) core. Both compounds maintain the inherent local emission characteristics of their MR-emitting core, exhibiting intense MR-TADF with high photoluminescence quantum yields in toluene and rigid states. In contrast, the presence of the dark lowest-energy charge transfer state, induced by cage rotation in THF, is suggested to be responsible for emission quenching in a polar solvent. Despite the different arrangement of the cage on the DABNA core, both 1 and 2 show red-shifted emissions compared to the parent compound BuDABNA (3). By utilizing 1 as the emitter, high-efficiency blue organic light-emitting diodes (OLEDs) are achieved with a remarkable maximum external quantum efficiency of 25%, representing the highest reported efficiency for OLEDs employing an o-carboranyl luminophore as the emitter.

9.
Angew Chem Int Ed Engl ; 63(5): e202316479, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38055193

RESUMO

Efficient ultraviolet (UV) electroluminescent materials remain a great challenge, since short peak wavelength <400 nm and narrow full width at half maximum (FWHM) <50 nm are simultaneously required. In this sense, multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters featuring narrow-band emissions hold the promise for UV applications. Herein, a novel MR-TADF skeleton featuring carbazole-phosphine oxide (P=O) fused aromatics is developed to construct the first two UV MR emitters named CzP2PO and tBCzP2PO. In addition to synergistic resonance effects of P=O and N atom, sp3 -hybrid P atom renders the curved polycyclic planes of CzP2PO and tBCzP2PO, giving rise to their narrowband UV emissions with peak wavelengths <390 nm and FWHM<35 nm. Besides configuration quasi-planarization for radiation enhancement and quenching suppression, P=O moiety further enhances singlet-triplet coupling to facilitate reverse intersystem crossing, resulting in the state-of-the-art photoluminescence quantum yield of 62 % in tBCzP2PO doped films. As consequence, tBCzP2PO endowed its UV organic light-emitting diodes with the peak at 382 nm and FWHM of 32 nm, and especially the record-high external quantum efficiency (EQE) of 15.1 % among all kinds of UV devices. Our results demonstrate great potential of P=O based MR emitters in practical applications including optoelectronics, biology and medicine science.

10.
Adv Mater ; 36(5): e2307420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37697624

RESUMO

Chiral B/N embedded multi-resonance (MR) emitters open a new paradigm of circularly polarized (CP) organic light-emitting diodes (OLEDs) owing to their unique narrowband spectra. However, pure-red CP-MR emitters and devices remain exclusive in literature. Herein, by introducing a B-N covalent bond to lower the electron-withdrawing ability of the para-positioned B-π-B motif, the first pair of pure-red double hetero-[n]helicenes (n = 6 and 7) CP-MR emitter peaking 617 nm with a small full-width at half-maximum of 38 nm and a high photoluminescence quantum yield of ≈100% in toluene is developed. The intense mirror-image CP light produced by the enantiomers is characterized by high photoluminescence dissymmetry factors (gPL ) of +1.40/-1.41 × 10-3 from their stable helicenes configuration. The corresponding devices using these enantiomers afford impressive CP electroluminescence dissymmetry factors (gEL ) of +1.91/-1.77 × 10-3 , maximum external quantum efficiencies of 36.6%/34.4% and Commission Internationale de I'Éclairage coordinates of (0.67, 0.33), exactly satisfying the red-color requirement specified by National Television Standards Committee (NTSC) standard. Notably a remarkable long LT95 (operational time to 95% of the initial luminance) of ≈400 h at an initial brightness of 10,000 cd m-2 is also observed for the same device, representing the most stable CP-OLED up to date.

11.
Luminescence ; 39(1): e4624, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950413

RESUMO

Organic light-emitting diodes (OLEDs) utilizing multi-resonance (MR) emitters show great potential in ultrahigh-definition display benefitting from superior merits of MR emitters such as high color purity and photoluminescence quantum yields. However, the scarcity of narrowband pure-green MR emitters with novel backbones and facile synthesis has limited their further development. Herein, two novel pure-green MR emitters (IDIDBN and tBuIDIDBN) are demonstrated via replacing the carbazole subunits in the bluish-green BCzBN skeleton with new polycyclic aromatic hydrocarbon (PAH) units, 5-phenyl-5,10-dihydroindolo[3,2-b]indole (IDID) and 5-(4-(tert-butyl)phenyl)-5,10-dihydroindolo[3,2-b]indole (tBuIDID), to simultaneously enlarge the π-conjugation and enhance the electron-donating strength. Consequently, a successful red shift from aquamarine to pure-green is realized for IDIDBN and tBuIDIDBN with photoluminescence maxima peaking at 529 and 532 nm, along with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.71) and (0.28, 0.70). Furthermore, both emitters revealed narrowband emission with small full width at half-maximum (FWHM) below 28 nm. Notably, the narrowband pure-green emission was effectively preserved in corresponding devices, which afford elevated maximum external quantum efficiencies of 16.3% and 18.3% for IDIDBN and tBuIDIDBN.


Assuntos
Indóis , Hidrocarbonetos Policíclicos Aromáticos , Elétrons
12.
Angew Chem Int Ed Engl ; 62(40): e202310047, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37593817

RESUMO

The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.

13.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446779

RESUMO

In organic light-emitting diodes, positive and negative charge carriers mostly migrate at different rates. This could result in excitons formed in the EML often migrating to the vicinity of the hole transport layer and the electron transport layer. To address this, it is important to design high-quality multi-resonance hosts that can balance the migration rate of carriers. Here, we report two newly developed multi-resonance hosts, m-ICzPBI and o-ICzPBI. The hosts contain an indolo[3,2,1-jk]carbazole (ICz) motif, which functionalized as either a donor or an acceptor unit. The hosts exhibit extremely high molecular rigidity and thermal stability. Devices A and B were constructed using FIrpic as a phosphorescent emitter with m-ICzPBI or o-ICzPBI as a host. Device A achieved high maximum values of EQE, PE and CE of 13.4%, 24.8 lm W-1 and 31.6 cd A-1, respectively, and low efficiency roll-off at 5000 cd m-2 of 8.6%, 10.6 lm W-1 and 20.3 cd A-1, respectively.


Assuntos
Carbazóis , Radiação , Humanos , Transporte de Elétrons , Doadores de Tecidos , Vibração
14.
Chemistry ; 29(61): e202301931, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37423895

RESUMO

Great achievements have been made in the development of organic light-emitting diodes in recent decades. However, achieving high color purity for blue emitters remains a challenge. In this study, we have designed and synthesized three naphthalene (NA)-embedded multi-resonance (MR) emitters, named SNA, SNB and SNB1, based on N-B-O frameworks with isomer variations for finely adjusting the photophysical properties. These emitters show tunable blue emission with emission peaks of 450-470 nm. Small full width of half maximum (FWHM) of 25-29 nm are achieved in these emitters, indicating the well maintaining of molecular rigidity and MR effect with NA extension. Such design also ensures a fast radiative decay. However, no obvious delayed fluorescence is observed in all three emitters due to the relatively large energy differences between the first singlet and triplet excited states. Both SNA and SNB enable high electroluminescent (EL) performance in doped devices with external quantum efficiency (EQE) of 7.2 and 7.9 %, respectively. When applying the sensitized strategy, devices based on SNA and SNB show huge improvement with EQE of 29.3 and 29.1 %. More importantly, SNB with twist geometry enables stable EL spectra with almost unchanged FWHM under different doping concentrations. This work demonstrates the potential of NA extension design in constructing narrowband emissive blue emitters.

15.
Rep Prog Phys ; 86(9)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37343543

RESUMO

Recently, the remarkable advances in thermally activated delayed fluorescence (TADF) materials have attracted much attention due to their 100% exciton utilization efficiency in organic light-emitting diodes (OLEDs). Although the commercialization of TADF materials is at an early stage, they exhibit enormous potential for next-generation OLEDs due to the comparable electroluminescence performance to metal of their phosphorescent complex counterparts, but without the presence of precious metal elements. This review summarizes the different types of TADF small molecules with various photophysical properties and the state-of-the-art molecular design strategies. Furthermore, the device engineering is discussed, and emerging optoelectronic applications, such as organic light-emitting electrochemical cells, organic lasing, and organic scintillators, are introduced. It is anticipated that this review can clarify the design of efficient TADF emitters and point out the direction of future development.

16.
Angew Chem Int Ed Engl ; 62(32): e202306879, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321976

RESUMO

Designing multi-resonance (MR) emitters that can simultaneously achieve narrowband emission and suppressed intermolecular interactions is challenging for realizing high color purity and stable blue organic light-emitting diodes (OLEDs). Herein, a sterically shielded yet extremely rigid emitter based on a triptycene-fused B,N core (Tp-DABNA) is proposed to address the issue. Tp-DABNA exhibits intense deep blue emissions with a narrow full width at half maximum (FWHM) and a high horizontal transition dipole ratio, superior to the well-known bulky emitter, t-DABNA. The rigid MR skeleton of Tp-DABNA suppresses structural relaxation in the excited state, with reduced contributions from the medium- and high-frequency vibrational modes to spectral broadening. The hyperfluorescence (HF) film composed of a sensitizer and Tp-DABNA shows reduced Dexter energy transfer compared to those of t-DABNA and DABNA-1. Notably, deep blue TADF-OLEDs with the Tp-DABNA emitter display higher external quantum efficiencies (EQEmax =24.8 %) and narrower FWHMs (≤26 nm) than t-DABNA-based OLEDs (EQEmax =19.8 %). The HF-OLEDs based on the Tp-DABNA emitter further demonstrate improved performance with an EQEmax of 28.7 % and mitigated efficiency roll-offs.

17.
Photoacoustics ; 31: 100492, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37113272

RESUMO

Enhancing multi-gas detectability using photoacoustic spectroscopy capable of simultaneous detection, highly selectivity and less cross-interference is essential for dissolved gas sensing application. A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively. The influence of potential cross-sensitivity towards humidity have been examined in terms of multi-gas detection. The experimentally determined minimum detection limits of CO, CH4 and C2H2 were 89ppb, 80ppb and 664ppb respectively, corresponding to the normalized noise equivalent absorption coefficients of 5.75 × 10-7 cm-1 W Hz-1/2, 1.97 × 10-8 cm-1 W Hz-1/2 and 4.23 × 10-8 cm-1 W Hz-1/2.

18.
Angew Chem Int Ed Engl ; 62(19): e202302478, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36897063

RESUMO

Heavy-atom integration into thermally activated delayed fluorescence (TADF) molecule could significantly promote the reverse intersystem crossing (RISC) process. However, simultaneously achieving high efficiency, small roll-off, narrowband emission and good operational lifetime remains a big challenge for the corresponding organic light-emitting diodes (OLEDs). Herein, we report a pure green multi-resonance TADF molecule BN-STO by introducing a peripheral heavy atom selenium onto the parent BN-Cz molecule. The organic light-emitting diode device based on BN-STO exhibited state-of-the-art performance with a maximum external quantum efficiency (EQE) of 40.1 %, power efficiency (PE) of 176.9 lm W-1 , well-suppressed efficiency roll-off and pure green gamut. This work reveals a feasible strategy to reach a balance between fast RISC process and narrow full width at half maximum (FWHM) of MR-TADF by heavy atom effect.

19.
Adv Mater ; 35(22): e2212237, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36893769

RESUMO

Multi-resonance (MR) molecules with thermally activated delayed fluorescence (TADF) are emerging as promising candidates for high-definition displays because of their narrow emission spectra. However, the electroluminescence (EL) efficiencies and spectra of MR-TADF molecules are highly sensitive to hosts and sensitizers when applied to organic light-emitting diodes (OLEDs), and the highly polar environments in devices often lead to significantly broadened EL spectra. In this study, a proof-of-concept TADF sensitizer (BTDMAC-XT) with low polarity, high steric hindrance, and concentration-quenching free feature is constructed, which acts as a good emitter in doped and non-doped OLEDs with high external quantum efficiencies (ηext s) of 26.7% and 29.3%, respectively. By combining BTDMAC-XT with conventional low-polarity hosts, low-polarity sensitizing systems with a small carrier injection barrier and full exciton utilization are constructed for the MR-TADF molecule BN2. Hyperfluorescence (HF) OLEDs employing the low-polar sensitizing systems successfully improve the color quality of BN2 and afford an excellent ηext of 34.4%, a record-high power efficiency of 166.3 lm W-1 and a long operational lifetime (LT50  = 40309 h) at an initial luminance of 100 cd m-2 . These results provide instructive guidance for the sensitizer design and device optimization for energy-efficient and stable HF-OLEDs with high-quality light.

20.
Angew Chem Int Ed Engl ; 62(10): e202215226, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593222

RESUMO

Rationally tuning the emission position and narrowing the full width at half-maximum (FWHM) of an emitter is of great importance for many applications. By synergistically improving rigidity, strengthening the resonant strength, inhibiting molecular bending and rocking, and destabilizing the HOMO energy level, a deep-blue emitter (CZ2CO) with a peak wavelength of 440 nm and an ultranarrow spectral FWHM of 16 nm (0.10 eV) was developed via intramolecular cyclization in a carbonyl/N resonant core (QAO). The dominant υ0-0 transition character of CZ2CO gives a Commission Internationale de I'Éclairage coordinates (CIE) of (0.144, 0.042), nicely complying with the BT.2020 standard. Moreover, a hyper-fluorescent device based on CZ2CO shows a high maximum external quantum efficiency (EQEmax ) of 25.6 % and maintains an EQE of 22.4 % at a practical brightness of 1000 cd m-2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA