Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 16: 609-621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800086

RESUMO

This study aimed to investigate the effects of focal brain cooling (FBC) on spreading depolarization (SD), which is associated with several neurological disorders. Although it has been studied from various aspects, no medication has been developed that can effectively control SD. As FBC can reduce neuronal damage and promote functional recovery in pathological conditions such as epilepsy, cerebral ischemia, and traumatic brain injury, it may also potentially suppress the onset and progression of SD. We created an experimental rat model of SD by administering 1 M potassium chloride (KCl) to the cortical surface. Changes in neuronal and vascular modalities were evaluated using multimodal recording, which simultaneously recorded brain temperature (BrT), wide range electrocorticogram, and two-dimensional cerebral blood flow. The rats were divided into two groups (cooling [CL] and non-cooling [NC]). Warm or cold saline was perfused on the surface of one hemisphere to maintain BrT at 37°C or 15°C in the NC and CL groups, respectively. Western blot analysis was performed to determine the effects of FBC on endothelial nitric oxide synthase (eNOS) expression. In the NC group, KCl administration triggered repetitive SDs (mean frequency = 11.57/h). In the CL group, FBC increased the duration of all KCl-induced events and gradually reduced their frequency. Additionally, eNOS expression decreased in the cooled brain regions compared to the non-cooled contralateral hemisphere. The results obtained by multimodal recording suggest that FBC suppresses SD and decreases eNOS expression. This study may contribute to developing new treatments for SD and related neurological disorders.

2.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475042

RESUMO

The ubiquity of digital technology has facilitated detailed recording of human behaviour. Ambient technology has been used to capture behaviours in a broad range of applications ranging from healthcare and monitoring to assessment of cooperative work. However, existing systems often face challenges in terms of autonomy, usability, and privacy. This paper presents a portable, easy-to-use and privacy-preserving system for capturing behavioural signals unobtrusively in home or in office settings. The system focuses on the capture of audio, video, and depth imaging. It is based on a device built on a small-factor platform that incorporates ambient sensors which can be integrated with the audio and depth video hardware for multimodal behaviour tracking. The system can be accessed remotely and integrated into a network of sensors. Data are encrypted in real time to ensure safety and privacy. We illustrate uses of the device in two different settings, namely, a healthy-ageing IoT application, where the device is used in conjunction with a range of IoT sensors to monitor an older person's mental well-being at home, and a healthcare communication quality assessment application, where the device is used to capture a patient-clinician interaction for consultation quality appraisal. CUSCO can automatically detect active speakers, extract acoustic features, record video and depth streams, and recognise emotions and cognitive impairment with promising accuracy.


Assuntos
Inteligência Ambiental , Humanos , Idoso , Atenção à Saúde/métodos , Privacidade , Emoções , Cultura
3.
Neurosci Res ; 203: 1-7, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38141782

RESUMO

Multimodal recording using electroencephalogram (EEG) and other biological signals (e.g., muscle activities, eye movement, pupil diameters, or body kinematics data) is ubiquitous in human neuroscience research. However, the precise time alignment of multiple data from heterogeneous sources (i.e., devices) is often arduous due to variable recording parameters of commercially available research devices and complex experimental setups. In this review, we introduced the versatility of a Lab Streaming Layer (LSL)-based application that can overcome two common issues in measuring multimodal data: jitter and latency. We discussed the issues of jitter and latency in multimodal recordings and the benefits of time-synchronization when recording with multiple devices. In addition, a computer simulation was performed to highlight how the millisecond-order jitter readily affects the signal-to-noise ratio of the electrophysiological outcome. Together, we argue that the LSL-based system can be used for research requiring precise time-alignment of datasets. Studies that detect stimulus-induced transient neural responses or test hypotheses regarding temporal relationships of different functional aspects with multimodal data would benefit most from LSL-based systems.


Assuntos
Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Encéfalo/fisiologia , Simulação por Computador , Processamento de Sinais Assistido por Computador
4.
Adv Healthc Mater ; 9(17): e2000814, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32691992

RESUMO

Soft, stretchable materials hold great promise for the fabrication of biomedical devices due to their capacity to integrate gracefully with and conform to biological tissues. Conformal devices are of particular interest in the development of brain interfaces where rigid structures can lead to tissue damage and loss of signal quality over the lifetime of the implant. Interfaces to study brain function and dysfunction increasingly require multimodal access in order to facilitate measurement of diverse physiological signals that span the disparate temporal and spatial scales of brain dynamics. Here the Opto-e-Dura, a soft, stretchable, 16-channel electrocorticography array that is optically transparent is presented. Its compatibility with diverse optical and electrical readouts is demonstrated enabling multimodal studies that bridge spatial and temporal scales. The device is chronically stable for weeks, compatible with wide-field and 2-photon calcium imaging and permits the repeated insertion of penetrating multielectrode arrays. As the variety of sensors and effectors realizable on soft, stretchable substrates expands, similar devices that provide large-scale, multimodal access to the brain will continue to improve fundamental understanding of brain function.


Assuntos
Encéfalo , Eletrocorticografia , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA