Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
J Colloid Interface Sci ; 678(Pt A): 872-885, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39222607

RESUMO

Multi-mode dynamic anti-counterfeiting materials can provide complex anti-counterfeiting performance and ensure the anti-counterfeiting strategy becomes more secure. Herein, a new type of multi-mode anti-counterfeiting encryption material of CaAl12O19:Eu, Er with different Er doping concentration was developed by sol-gel method. Interestingly, the CaAl12O19:Eu, Er phosphor and its composite have multi-mode anti-counterfeiting characteristics of multi-color down-conversion luminescence, up-conversion luminescence, dynamic luminescence, and photochromism. Effect of different Er doping concentration on the down-conversion luminescence, up-conversion luminescence, dynamic luminescence, and photochromism of CaAl12O19:Eu, Er was systematically investigated, and the relevant mechanisms were discussed. These anti-counterfeiting features can be simultaneously applied in both bright and dark fields, which can achieve high-level anti-counterfeiting in both spatial and temporal dimensions. The CaAl12O19:Eu, Er phosphors cannot be easily replaced by other materials with the same anti-counterfeiting properties. They display good application foreground in the field of anti-counterfeiting encryption.

2.
Sci Rep ; 14(1): 21199, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261549

RESUMO

Independent control of electromagnetic (EM) waves by metasurfaces for multiple tasks are highly desired and is the recent hot topic of research. In this work we contribute a polarization insensitive frequency multiplexed 2-bit coding metasurface to control the Terahertz (THz) waves in the two operating bands independently. In this regard, as a first step a cascaded meta-atom composed of square rings and/or square metallic patches separated by two polyimide substrates is designed and optimized that provides sixteen independent distinct discrete phases in the reflection geometry. These meta-atoms are then distributed with distinct coding sequences in the two-dimensional spatial plane to realize various bi-functional metasurfaces. As a proof of the concept various full structures are designed and simulated to realize a series of bi-functionalities including anomalous reflection/beam shaping, beam shaping/anomalous reflection, beam deflection/Orbital angular momentum (OAM) beam generation with distinct modes and propagating wave to surface wave (PW-SW) conversion/PW beam manipulation in the lower and higher THz bands, respectively. All the simulation results are in excellent agreement with their theoretical equivalents. We envision that the proposed meta-designs have potential applications for the multi-spectral control of EM waves in THz band. The idea can be further extended to design frequency dependent tri-functional and multi-functional THz meta-devices.

3.
Adv Mater ; : e2409338, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308317

RESUMO

The development of organic phosphorescent scintillators with high exciton utilization efficiency has attracted significant attention but remains a difficult challenge because of the inherent spin-forbidden feature of X-ray-induced triplet excitons. Herein, a design strategy is proposed to develop organic phosphorescent scintillators through thermally activated exciton release to convert stabilized spin-forbidden triplet excitons to spin-allowed singlet excitons, which enables singlet exciton-dominated multi-mode emission simultaneously from the lowest singlet, triplet, and stabilized triplet states. The resultant scintillators demonstrate a maximum photoluminescence efficiency of 65.8% and a minimum X-ray radiation detection limit of 110 nGy s-1; this allows efficient radiography imaging with a spatial resolution of ≈10.0 lp mm-1. This study advances the fundamental understanding of exciton dynamics under X-ray excitation, significantly broadening the practical use of phosphorescent materials for safety-critical industries and medical diagnostics.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125176, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39316860

RESUMO

This study explored the enhancement of near-infrared emissions in YbVO4: Er3+ through Y3+ ion doping under a 980 nm laser excitation. The phosphor exhibits weak green emissions at 527 nm (2H11/2 â†’ 4I15/2) and 553 nm (4S3/2 â†’ 4I15/2), red emissions at 654 nm (4F9/2 â†’ 4I15/2), and a strong near-infrared emission at 803 nm (4I9/2 â†’ 4I15/2). Optimal doping concentration of Y3+ ion in YbVO4: 0.02 Er3+ was determined to be 0.1, resulting in a 7.6-fold enhancement of near-infrared luminescence. This enhancement is attributed to defect bands facilitating energy transfer from green and red levels to the near-infrared levels. Furthermore, a multi-mode temperature sensor based on YbVO4: Er3+/Y3+ was developed, offering four distinct temperature sensing modes: TCEL of 2H11/2/4S3/2, NTCEL of 2H11/2/4F9/2 and 4S3/2/4F9/2, and single luminescence emission intensity of 4I9/2 energy level. The sensor demonstrates maximum relative sensitivities of 1.17 % K-1 at 298 K, 0.66 % K-1 at 298 K, 0.41 % K-1 at 298 K and 1.29 % K-1 at 673 K. YbVO4: Er3+/Y3+ phosphor exhibits high temperature sensitivity, showcasing significant potential for optical temperature sensing applications.

5.
ACS Appl Mater Interfaces ; 16(38): 51080-51088, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39267398

RESUMO

Cryogenic detection technology is essential to ensure safety and effectiveness in fields such as medical refrigeration, cold chain transport, and cryogenic bioengineering. In this paper, a time-responsive visual cryogenic detection strategy is developed based on the storage properties of CaZnOS: Pb2+, Pr3+ phosphors with shallow traps. Since the carrier release rate from the trap center receives the influence of ambient temperature and storage time, the storage time of the temperature-sensitive product can be determined by the different optical signals of CaZnOS: Pb2+, Pr3+ phosphors obtained under 980 nm laser irradiation. In addition, CaZnOS: Pb2+, Pr3+ phosphors with multimode luminescence enable time-responsive visual detection of ambient temperature under extreme conditions. This work not only demonstrates the potential of CaZnOS: Pb2+, Pr3+ phosphors for visual detection of temperature and time but also paves the way for the development of various applications relying on cryogenic monitoring.

6.
Talanta ; 282: 126949, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39341058

RESUMO

The efficient and accurate separation of immunoglobulin G (IgG) plays a vital role for disease diagnosis and therapy, but it is always hampered by the huge geometric size and complex structure of IgG. In this work, an amorphous Fe/Co bimetallic organic framework (denoted as PMOF-Fe/Co) is fabricated for IgG separation, with octa-carboxyl polyhedral oligomeric silsesquioxane (OCPOSS) as modulator for the first time. Benefiting from the rigid nanostructure and competitive coordination of OCPOSS, the aperture of PMOF-Fe/Co is enlarged to ∼20 nm along with the generation of enormous structural defects, which enables the accommodation of protein species with high molecular weights and large sizes. OCPOSS is also found exerting a positive impact on mediating the specific recognition and adsorption ability of PMOF-Fe/Co towards IgG through metal affinity, hydrophilic and hydrophobic interactions. Consequently, the multimode and multivalent affinity of PMOF-Fe/Co gives rise to an extraordinary adsorption capacity (2691.7 mg g-1) and satisfactory practical application performance. This study is convinced to provide a simple avenue for the efficient separation of specific large-sized proteins, as well as the engineering of abiotic affinity reagents with compositional and architectural complexity.

7.
Micromachines (Basel) ; 15(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39203591

RESUMO

Multimode fibers are attractive for high-power lasers if transverse modes are efficiently controlled. Here, a dielectric thin-film mirror (R~20%) is micro-fabricated on the central area of the end face of a 1 km multimode 100/140 µm graded-index fiber and tested as the output mirror of a Raman laser with highly multimode (M2~34) 940 nm diode pumping. In the cavity with highly reflective input FBG, Raman lasing of the Stokes wave at 976 nm starts at the threshold pump power of ~80 W. Mode-selective properties of mirrors with various diameters were tested experimentally and compared with calculations in COMSOL, with the optimum diameter found to be around 12 µm. The measured Raman laser output beam at 976 nm has a quality factor of M2~2 near the threshold, which confirms a rather good selection of the fundamental transverse mode. The power scaling capabilities, together with a more detailed characterization of the output beam's spatial profile, spectrum, and their stability, are performed. An approximately 35 W output power with an approximately 60% slope efficiency and a narrow spectrum has been demonstrated at the expense of a slight worsening of beam quality to M2~3 without any sign of mirror degradation at the achieved intensity of >30 MW/cm2. Further power scaling of such lasers as well as the application of the proposed technique in high-power fiber lasers are discussed.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39164215

RESUMO

OBJECTIVES: We investigate the impact of data collection mode on responses to variables in NSHAP Round 4 and discuss how potential mode differences should (and should not) be addressed in substantive analyses. METHODS: Among the set of respondents who were eligible to be contacted remotely in Round 4, we randomly selected 398 to be contacted instead for an in-person interview. We compare response rates and the distributions of selected key outcomes among those 398 respondents to those among the control group who were initially approached remotely. As a contrast, we compare all R4 respondents according to the mode in which they completed the interview, including those not part of the randomized experiment. RESULTS: Among those included in the experiment, there was no evidence of systematic differences in responses to physical and mental health questions between remote and in-person modes, nor in responses to number recall measures. In-person respondents scored moderately lower on cognitive function measures requiring careful attention to a figure and/or task, though this difference became less with each similar item. Remote respondents named fewer social network members. Comparing all respondents according to their final mode yielded substantially different results in all cases. DISCUSSION: Mode did not appear to affect reports of physical and mental health based on a randomized comparison, though it did moderately affect other items in predictable ways. Naïve estimates of mode effects based on comparing all respondents according to mode yielded misleading results, and should not be used to adjust for mode differences in analyses.

9.
ACS Appl Mater Interfaces ; 16(33): 44026-44032, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133654

RESUMO

Aggregation-induced emission (AIE) molecules have great potential to enhance the performance of micronano lasers due to their excellent aggregated luminescence properties, so it is valuable to expand their applications in micronano lasers. In this work, a typical AIE active fluorescent dye motif 9,10-bis(2,2-diphenylvinyl) anthracene (BDPVA) was selected as the gain medium. First, drop-casting was used to fabricate BDPVA single-crystal nanowires, which can be used as Fabry-Perot (FP)-type resonators with a lasing threshold of 49.4 µJ/cm2. Furthermore, we innovatively doped BDPVA molecules as gain mediums into external polymer Whispering-Gallery-Mode (WGM)-type resonators via the emulsion self-assembly method. Fabricated BDPVA-doped polystyrene (PS) microspheres exhibit a much lower lasing threshold of 9.04 µJ/cm2. These results prove that the BDPVA molecules, in addition to realizing the reported AIE single-crystal lasers, can also be used as a guest-doped gain medium in the resonant cavity for obtaining better fluorescence gain. In addition, multimode tunability of two types of lasers has been successfully achieved by tuning the structure of the resonant cavity. This work further expands the application potential of AIE materials and will provide a useful reference for the rational design and fabrication of photonic micronano laser components using AIE materials.

10.
Sensors (Basel) ; 24(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124103

RESUMO

The microstrip devices based on multimode resonators represent a class of electromagnetic microwave devices, promising use in tropospheric communication, radar, and navigation systems. The design of wideband bandpass filters, diplexers, and multiplexers with required frequency-selective properties, i.e., bandpass filters, is a complex problem, as electrodynamic modeling is a time-consuming and computationally intensive process. Various planar microstrip resonator topologies can be developed, differing in their topology type, and the search for high-quality structures with unique frequency-selective properties is an important research direction. In this study, we propose an approach for performing an automated search for multimode resonators' conductor topology parameters using a combination of evolutionary computation approach and surrogate modeling. In particular, a variant of differential evolution optimizer is applied, and the model of the target function landscape is built using Gaussian processes. At every iteration of the algorithm, the model is used to search for new high-quality solutions. In addition, a general approach for target function formulation is presented and applied in the proposed approach. The experiments with two microwave filters have demonstrated that the proposed algorithm is capable of solving the problem of tuning two types of topologies, namely three-mode resonators and six-mode resonators, to the required parameters, and the application of surrogated-assisted algorithm has significantly improved overall performance.

11.
Front Public Health ; 12: 1380884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050599

RESUMO

Background: Achieving a higher level of accessibility and equity to community healthcare services has become a major concern for health service delivery from the perspectives of health planners and policy makers in China. Methods: In this study, we introduced a comprehensive door-to-door (D2D) model, integrating it with the open OD API results for precise computation of accessibility to community hospitals over different transport modes. For the D2D public transit mode, we computed the temporal variation and standard deviation of accessibility at different times of the day. Additionally, accessibility values for D2D riding mode, D2D driving mode, and simple driving mode were also computed for comparison. Moreover, we introduced Lorenz curve and Gini index to assess the differences in equity of community healthcare across different times and transport modes. Results: The D2D public transit mode exhibits noticeable fluctuations in accessibility and equity based on the time of day. Accessibility and equity were notably influenced by traffic flow between 8 AM and 11 AM, while during the period from 12 PM to 10 PM, the open hours of community hospitals became a more significant determinant in Nanjing. The moments with the most equitable and inequitable overall spatial layouts were 10 AM and 10 PM, respectively. Among the four transport modes, the traditional simple driving mode exhibited the smallest equity index, with a Gini value of only 0.243. In contrast, the D2D riding mode, while widely preferred for accessing community healthcare services, had the highest Gini value, reaching 0.472. Conclusion: The proposed method combined the D2D model with the open OD API results is effective for accessibility computation of real transport modes. Spatial accessibility and equity of community healthcare experience significant fluctuations influenced by time variations. The transportation mode is also a significant factor affecting accessibility and equity level. These results are helpful to both planners and scholars that aim to build comprehensive spatial accessibility and equity models and optimize the location of public service facilities from the perspective of different temporal scales and a multi-mode transport system.


Assuntos
Acessibilidade aos Serviços de Saúde , Meios de Transporte , Humanos , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , China , Meios de Transporte/estatística & dados numéricos , Fatores de Tempo , Serviços de Saúde Comunitária/estatística & dados numéricos , Hospitais Comunitários/estatística & dados numéricos
12.
Adv Mater ; : e2314083, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003611

RESUMO

Smart stimuli-responsive persistent luminescence materials, combining the various advantages and frontier applications prospects, have gained booming progress in recent years. The trap-controlled property and energy storage capability to respond to external multi-stimulations through diverse luminescence pathways make them attractive in emerging multi-responsive smart platforms. This review aims at the recent advances in trap-controlled luminescence materials for advanced multi-stimuli-responsive smart platforms. The design principles, luminescence mechanisms, and representative stimulations, i.e., thermo-, photo-, mechano-, and X-rays responsiveness, are comprehensively summarized. Various emerging multi-responsive hybrid systems containing trap-controlled luminescence materials are highlighted. Specifically, temperature dependent trapping and de-trapping performance is discussed, from extreme-low temperature to ultra-high temperature conditions. Emerging applications and future perspectives are briefly presented. It is hoped that this review would provide new insights and guidelines for the rational design and performance manipulation of multi-responsive materials for advanced smart platforms.

13.
Sci Rep ; 14(1): 15872, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982095

RESUMO

We present theoretical and experimental evidence of high-gain far-detuned nonlinear frequency conversion, extending towards both the visible and the mid-infrared, in a few-mode graded-index silica fiber pumped at 1.064  µ m , and more specifically achieving gains of hundreds of dB per meter below 0.65  µ m and beyond 3.5  µ m . Interestingly, our findings highlight the potential of graded-index fibers for enabling high-gain wavelength conversion into the strong-loss spectral region of silica. Such advancements require an accurate interpretation of intramodal and intermodal four-wave mixing processes.

14.
J Colloid Interface Sci ; 675: 64-73, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38964125

RESUMO

Artificial colloidal motors capable of converting various external energy into mechanical motion, have emerged as attractive photosensitizer (PS) nanocarriers with good deliverability for photodynamic therapy. However, photoactivated 3O2-to-1O2 transformation as the most crucial energy transfer of the photodynamic process itself is still challenging to convert into autonomous transport. Herein, we report on PS-loaded thiophane-containing semiconducting conjugated polymer (SCP)-based polymer colloidal motors with asymmetric geometry for photodynamic-regulated propulsion in the liquid. The asymmetrical presence of the SCP phases within the colloidal motors would lead to significant differences in the 3O2-to-1O2 transformation and 1O2 release manners between asymmetrical polymer phases, spontaneously creating asymmetrical osmotic pressure gradients across the nanoparticles for powering the self-propelled motion under photodynamic regulation. This photoactivated energy-converting behavior can be also combined with the photothermal conversion of the SCP phases to create two energy gradients exerting diffusiophoretic/thermophoretic force on the colloidal motors for achieving multimode synergistic propulsion. This unique motile feature endows the light-driven PS nanocarriers with good permeability against various physiological barriers in the tumor microenvironment for enhancing antitumor efficacy, showing great potential in phototherapy.


Assuntos
Coloides , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polímeros , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Coloides/química , Polímeros/química , Polímeros/farmacologia , Humanos , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície , Portadores de Fármacos/química , Antineoplásicos/química , Antineoplásicos/farmacologia
15.
Talanta ; 278: 126495, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955105

RESUMO

Accurate and sensitive determination of human immunoglobulin G (HIgG) level is critical for diagnosis and treatment of various diseases, including rheumatoid arthritis, humoral immunodeficiencies, and infectious disease. In this study, versatile tri-signal probes were developed by preparing CdS@SiO2 nanorods that integrate photoluminescence (PL), multi-phonon resonant Raman scattering (MRRS) and infrared absorption (IRA) properties. Through the coating of multiple CdS nanoparticles as cores within SiO2 shells, the PL and MRRS properties of CdS were improved, resulting in a significantly lowered limit of detection (LOD), with the lowest LOD of 12.37 ag mL-1. Integration with the distinctive IRA property of SiO2 shells widened the detection range towards higher concentrations, establishing a final linear range of 50 ag mL-1 to 10 µg mL-1. The remarkable consistency among the three signals highlighted the robust internal verification capability for accurate detection. This approach enhances flexibility in selecting detection methodologies to suit diverse scenarios, facilitating HIgG detection. The tri-signal nanoprobes also exhibited excellent detection selectivity, specificity and repeatability. This study presents a fresh idea for developing high-performance detection strategies.


Assuntos
Compostos de Cádmio , Imunoglobulina G , Limite de Detecção , Dióxido de Silício , Sulfetos , Humanos , Dióxido de Silício/química , Compostos de Cádmio/química , Imunoglobulina G/análise , Imunoglobulina G/química , Imunoglobulina G/imunologia , Sulfetos/química , Análise Espectral Raman/métodos
16.
Adv Mater ; 36(35): e2402624, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39007260

RESUMO

We report on multi-resonance chirped distributed Bragg reflector (DBR) microcavities. These systems are employed to investigate the light-mater interaction with both intra- and inter-layer excitons of transition metal dichalcogenide (TMDC) bilayer heterostructures. The chirped DBRs consisting of SiO2 and Si3N4 layers of gradually varying thickness exhibit a broad stopband with a width exceeding 600 nm. Importantly, the structures provide multiple resonances across a broad spectral range, which can be matched to resonances of the embedded TMDC heterostructures. Studying cavity-coupled emission of both intra- and inter-layer excitons from an integrated WSe2/MoSe2 heterostructure in a chirped microcavity system, an enhanced interlayer exciton emission with a Purcell factor of 6.67 ± 1.02 at 4 K is observed. The cavity-enhanced emission of the interlayer exciton is used to investigate its temperature-dependent luminescence lifetime of 60 ps at room temperature. The cavity system modestly suppresses intralayer exciton emission by intentional detuning, thereby promoting a higher IX population and enhancing cavity-coupled interlayer exciton emission. This approach provides an intriguing platform for future studies of energetically distant and confined excitons in different semiconducting materials, which paves the way for various applications such as microlasers and single-photon sources by enabling precise emission control and utilizing multimode resonance light-matter interaction.

17.
ACS Appl Mater Interfaces ; 16(27): 35626-35638, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38943621

RESUMO

Ionogel-based sensors have gained widespread attention in recent years due to their excellent flexibility, biocompatibility, and multifunctionality. However, the adaptation of ionogel-based sensors in extreme environments (such as humid, acidic, alkaline, and salt environments) has rarely been studied. Here, thermoplastic polyurethane/carbon nanotubes-ionic liquids (TPU/CNTs-ILs) ionogels with a complementary sandpaper morphology on the surface were prepared by a solution-casting method with a simple sandpaper as the template, and the hydrophobic flexible TPU/CNTs-ILs ionogel-based sensor was obtained by modification using nanoparticles modified with cetyltrimethoxysilane. The hydrophobicity improves the environmental resistance of the sensor. The ionogel-based sensor exhibits multimode sensing performance and can accurately detect response signals from strain (0-150%), pressure (0.1-1 kPa), and temperature (30-100 °C) stimuli. Most importantly, the hydrophobic TPU/CNTs-ILs ionogel-based sensors can be used not only as wearable strain sensors to monitor human motion signals but also for information transfer, writing recognition systems, and underwater activity monitoring. Thus, the hydrophobic TPU/CNTs-ILs ionogel-based sensor offers a new strategy for wearable electronics, especially for applications in extreme environments.

18.
J Biophotonics ; 17(8): e202400137, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38894526

RESUMO

Label-free biological cell imaging relies on rapid multimode phase imaging of biological samples in natural settings. To improve image contrast, phase is encoded into intensity information using the differential interference contrast (DIC) and Zernike phase contrast (ZPC) techniques. To enable multimode contrast-enhanced observation of unstained specimens, this paper proposes an improved multimode phase imaging method based on the transport of intensity equation (TIE), which combines conventional microscopy with computational imaging. The ZPC imaging module based on adaptive aperture adjustment is applied when the quantitative phase results of biological samples have been obtained by solving the TIE. Simultaneously, a rotationally symmetric shear-based technique is used that can yield isotropic DIC. In this paper, we describe numerical simulation and optical experiments carried out to validate the accuracy and viability of this technology. The calculated Michelson contrast of the ZPC image in the resolution plate experiment increased from 0.196 to 0.394.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia de Contraste de Fase , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Contraste de Fase/métodos , Humanos
19.
ACS Appl Mater Interfaces ; 16(25): 32402-32410, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875019

RESUMO

Optical signals with distinctive properties, such as contactless, fast response, and high identification, are harnessed to realize advanced anti-counterfeiting. However, the simultaneous attainment of multi-color, -temporal, and -modal luminescence performance remains a compelling and imperative pursuit. In our work, a temperature/photon-responded dynamic self-activated luminescence originating from nonstoichiometric Zn2GeO4 is developed with the modulation of intrinsic defects. The increased concentration of oxygen vacancies (VO••) contributes to an enhanced recombination of ZnGe″-VO••, ultimately improving the self-activated luminescence performance. Additionally, the photoluminescence (PL) color of the representative Zn2.2GeO4 sample changes from green to blue-white with the increased ultraviolet (UV) irradiation time. Concurrently, the emission color undergoes a variation from blue to green as the ambient temperature raises from 280 to 420 K. Remarkably, green long persistent luminescence (LPL) and photostimulated luminescence (PSL) behaviors are observed. Herein, this study elucidates a sophisticated anti-counterfeiting approach grounded in the dynamic luminescent attributes of nonstoichiometric Zn2GeO4, presenting a promising frontier for the evolution of anti-counterfeiting technologies.

20.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894243

RESUMO

Increasing airspace safety is an important challenge, both for unmanned aerial vehicles (UAVs) as well as manned aircraft. Future developments of collision avoidance systems are supposed to utilize information from multiple sensing systems. A compact sensing system could employ a multi-mode multi-port antenna (M 3PA). Their ability to radiate multiple orthogonal patterns simultaneously makes them suitable for communication applications as well as bearing and ranging applications. Furthermore, they can be designed to flexibly originate near-omnidirectional and/or directional radiation patterns. This option of flexibility with respect to the radiation characteristic is desired for antennas integrated in collision avoidance systems. Based on the aforementioned properties, M 3PAs represent a compelling option for aircraft transponders. In this paper, direction-of-arrival (DoA) estimation using an M 3PA designed for aerial applications is put to the test. First, a DoA estimation scheme suitable to be employed with M 3PAs is introduced. Next, the validity of the proposed method is confirmed through numerical simulations. Lastly, practical experiments are conducted in an antenna measurement chamber to verify the numerical results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA