Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.332
Filtrar
1.
Sci Total Environ ; 947: 174613, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997036

RESUMO

This study applies a regional Dynamic Energy Budget (DEB) model, enhanced to include biocalcification processes, to evaluate the carbon capture potential of farmed blue mussels (Mytilus edulis/trossulus) in the Baltic Sea. The research emphasises the long-term capture of carbon associated with shell formation, crucial for mitigating global warming effects. The model was built using a comprehensive pan-Baltic dataset that includes information on mussel growth, filtration and biodeposition rates, and nutrient content. The study also examined salinity, temperature, and chlorophyll a as key environmental factors influencing carbon capture in farmed mussels. Our findings revealed significant spatial and temporal variability in carbon dynamics under current and future environmental conditions. The tested future predictions are grounded in current scientific understanding and projections of climate change effects on the Baltic Sea. Notably, the outer Baltic Sea subbasins exhibited the highest carbon capture capacity with an average of 55 t (in the present scenario) and 65 t (under future environmental conditions) of carbon sequestrated per farm (0.25 ha) over a cultivation cycle - 17 months. Salinity was the main driver of predicted regional changes in carbon capture, while temperature and chlorophyll a had more pronounced local effects. This research advances our understanding of the role low trophic aquaculture plays in mitigating climate change. It highlights the importance of developing location-specific strategies for mussel farming that consider both local and regional environmental conditions. The results contribute to the wider discourse on sustainable aquaculture development and environmental conservation.

2.
PeerJ ; 12: e17697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993978

RESUMO

Rocky intertidal habitats occur worldwide and are mainly characterized by primary space holders such as seaweeds and sessile invertebrates. Some of these organisms are foundation species, as they can form structurally complex stands that host many small invertebrates. The abundance of primary space holders is known to vary along coastlines driven directly or indirectly by environmental variation. However, it is less clear if the invertebrate assemblages associated to a foundation species may remain relatively unchanged along coastlines, as similar stands of a foundation species can generate similar microclimates. We examined this question using abundance data for invertebrate species found in mussel stands of a similar structure in wave-exposed rocky habitats at mid-intertidal elevations along the Atlantic coast of Nova Scotia (Canada). While the most abundant invertebrate species were found at three locations spanning 315 km of coastline, species composition (a combined measure of species identity and their relative abundance) differed significantly among the locations. One of the species explaining the highest amount of variation among locations (a barnacle) exhibited potential signs of bottom-up regulation involving pelagic food supply, suggesting benthic-pelagic coupling. The abundance of the species that explained the highest amount of variation (an oligochaete) was positively related to the abundance of their predators (mites), further suggesting bottom-up forcing in these communities. Overall, we conclude that species assemblages associated to structurally similar stands of a foundation species can show clear changes in species composition at a regional scale.


Assuntos
Bivalves , Ecossistema , Invertebrados , Animais , Nova Escócia , Invertebrados/fisiologia , Bivalves/fisiologia , Biodiversidade
3.
Sci Rep ; 14(1): 16672, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030248

RESUMO

Breast cancer (BC) significantly contributes to cancer-related mortality in women, underscoring the criticality of early detection for optimal patient outcomes. Mammography is a key tool for identifying and diagnosing breast abnormalities; however, accurately distinguishing malignant mass lesions remains challenging. To address this issue, we propose a novel deep learning approach for BC screening utilizing mammography images. Our proposed model comprises three distinct stages: data collection from established benchmark sources, image segmentation employing an Atrous Convolution-based Attentive and Adaptive Trans-Res-UNet (ACA-ATRUNet) architecture, and BC identification via an Atrous Convolution-based Attentive and Adaptive Multi-scale DenseNet (ACA-AMDN) model. The hyperparameters within the ACA-ATRUNet and ACA-AMDN models are optimized using the Modified Mussel Length-based Eurasian Oystercatcher Optimization (MML-EOO) algorithm. The performance is evaluated using a variety of metrics, and a comparative analysis against conventional methods is presented. Our experimental results reveal that the proposed BC detection framework attains superior precision rates in early disease detection, demonstrating its potential to enhance mammography-based screening methodologies.


Assuntos
Algoritmos , Neoplasias da Mama , Mamografia , Humanos , Mamografia/métodos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos
4.
Sci Total Environ ; 946: 174386, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38960152

RESUMO

Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.


Assuntos
Microplásticos , Poliésteres , Poliestirenos , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Poliésteres/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Mytilus/efeitos dos fármacos , Mytilus/fisiologia , Petróleo/toxicidade
5.
Biol Open ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041886

RESUMO

Ocean acidification (OA) caused by increased atmospheric carbon dioxide is affecting marine systems a globally and is more extreme in coastal waters. A wealth of research to determine how species will be affected by OA, now and in the future, is emerging. Most studies are discrete and generally do not include the full life cycle of animals. Studies that include the potential for adaptation responses of animals from areas with different environmental conditions and the most vulnerable life stages are needed. Therefore, we conducted experiments with the widely-distributed blue mussel, Mytilus edulis, from populations regularly exposed to different OA conditions. Mussels experienced experimental conditions prior to spawning, through embryonic and larval development, a highly vulnerable stage. Survivorship to metamorphosis of larvae from all populations was negatively affected by extreme OA conditions (pH 7.3, Ωar, 0.39, pCO2 2479.74), but, surprisingly, responses to Mid OA (pH 7.6, Ωar 0.77, pCO21167.13) and Low OA (pH 7.9, Ωar 1.53, pCO2 514.50) varied among populations. Two populations were robust and showed no effect of OA on survivorship in this range. One population displayed the expected negative effect on survivorship with increased OA. Unexpectedly survivorship in the fourth population was highest under Mid OA conditions. There were also significant differences in development time among populations that were unaffected by OA. These results suggest that adaptation to OA may already be present in some populations and emphasizes the importance of testing animals from different populations to see the potential for adaptation to OA.

6.
Macromol Rapid Commun ; : e2400276, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031940

RESUMO

Lubricant-infused slippery surfaces have recently emerged as promising antifouling coatings, showing potential against proteins, cells, and marine mussels. However, a comprehensive understanding of the molecular binding behaviors and interaction strength of foulants to these surfaces is lacking. In this work, mussel-inspired chemistry based on catechol-containing chemicals including 3,4-dihydroxyphenylalanine (DOPA) and polydopamine (PDA) is employed to investigate the antifouling performance and repellence mechanisms of fluorinated-based slippery surface, and the correlated interaction mechanisms are probed using atomic force microscopy (AFM). Intermolecular force measurements and deposition experiments between PDA and the surface reveal the ability of lubricant film to inhibit the contact of PDA particles with the substrate. Moreover, the binding mechanisms and bond dissociation energy between a single DOPA moiety and the lubricant-infused slippery surface are quantitatively investigated employing single-molecule force spectroscopy based on AFM (SM-AFM), which reveal that the infused lubricant layer can remarkably influence the dissociation forces and weaken the binding strength between DOPA and underneath per-fluorinated monolayer surface. This work provides new nanomechanical insights into the fundamental antifouling mechanisms of the lubricant-infused slippery surfaces against mussel-derived adhesive chemicals, with important implications for the design of lubricant-infused materials and other novel antifouling platforms for various bioengineering and engineering applications.

7.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000014

RESUMO

Based on the nucleotide sequences of the mitochondrial genome (mitogenome) of specimens taken from two mussel species (Arcuatula senhousia and Mytilus coruscus), an investigation was performed by means of the complex approaches of the genomics, molecular phylogenetics, and evolutionary genetics. The mitogenome structure of studied mussels, like in many other invertebrates, appears to be much more variable than in vertebrates and includes changing gene order, duplications, and deletions, which were most frequent for tRNA genes; the mussel species' mitogenomes also have variable sizes. The results demonstrate some of the very important properties of protein polypeptides, such as hydrophobicity and its determination by the purine and pyrimidine nucleotide ratio. This fact might indirectly indicate the necessity of purifying natural selection for the support of polypeptide functionality. However, in accordance with the widely accepted and logical concept of natural cutoff selection for organisms living in nature, which explains its action against deleterious nucleotide substitutions in the nonsynonymous codons (mutations) and its holding of the active (effective) macromolecules of the polypeptides in a population, we were unable to get unambiguous evidence in favor of this concept in the current paper. Here, the phylogeny and systematics of mussel species from one of the largest taxons of bivalve mollusks are studied, the family known as Mytilidae. The phylogeny for Mytilidae (order Mytilida), which currently has no consensus in terms of systematics, is reconstructed using a data matrix of 26-27 mitogenomes. Initially, a set of 100 sequences from GenBank were downloaded and checked for their gender: whether they were female (F) or male (M) in origin. Our analysis of the new data confirms the known drastic differences between the F/M mitogenome lines in mussels. Phylogenetic reconstructions of the F-lines were performed using the combined set of genetic markers, reconstructing only protein-coding genes (PCGs), only rRNA + tRNA genes, and all genes. Additionally, the analysis includes the usage of nucleotide sequences composed of other data matrices, such as 20-68 mitogenome sequences. The time of divergence from MRCA, estimated via BEAST2, for Mytilidae is close to 293 Mya, suggesting that they originate in the Silurian Period. From all these data, a consensus for the phylogeny of the subfamily of Mytilinae and its systematics is suggested. In particular, the long-debated argument on mussel systematics was resolved as to whether Mytilidae, and the subfamily of Mytilinae, are monophyletic. The topology signal, which was strongly resolved in this paper and in the literature, has refuted the theory regarding the monophyly of Mytilinae.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Genoma Mitocondrial/genética , Mytilidae/genética , Mytilidae/classificação , RNA de Transferência/genética , Bivalves/genética , Bivalves/classificação , Mytilus/genética , Mytilus/classificação
8.
Artigo em Inglês | MEDLINE | ID: mdl-38997084

RESUMO

The predicted global warming of surface waters can be challenging to aquatic ectotherms like freshwater mussels. Especially animals in northern temperate latitudes may face and physiologically acclimate to significant stress from seasonal temperature fluctuations. Na+/K+-ATPase enzyme is one of the key mechanisms that allow mussels to cope with changing water temperatures. This enzyme plays a major role in osmoregulation, energy control, ion balance, metabolite transport and electrical excitability. Here, we experimentally studied the effects of temperature on Na+/K+-ATPase activity of gills in two freshwater mussel species, Anodonta anatina and Unio tumidus. The study animals were acclimated to three ambient temperatures (+4, +14, +24 °C) and Na+/K+-ATPase activity was measured at those temperatures for each acclimation group. Both species had their highest gill Na+/K+-ATPase activity at the highest acclimation temperature. Na+/K+-ATPase activity of gills exhibited species-specific differences, and was higher in A. anatina than U. tumidus in all test groups at all test temperatures. Temperature dependence of Na+/K+-ATPase was confirmed in both species, being highest at temperatures between +4 and + 14 °C when Q10 values in the acclimation groups varied between 5.06 and 6.71. Our results underline the importance of Na+/K+-ATPase of gills for the freshwater mussels in warming waters. Because Na+/K+-ATPase is the driving force behind ciliary motion, our results also suggest that in warming waters A. anatina may be more tolerant at sustaining vigorous ciliary action (associated with elevated respiration rates and filter-feeding) than U. tumidus. Overall, our results indicate great flexibility of the mussel's ecophysiological characteristics as response to changing conditions.

9.
Front Cell Dev Biol ; 12: 1431558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011392

RESUMO

Care for patients with peripheral nerve injury is multifaceted, as traditional methods are not devoid of limitations. Although the utilization of neural conduits shows promise as a therapeutic modality for peripheral nerve injury, its efficacy as a standalone intervention is limited. Hence, there is a pressing need to investigate a composite multifunctional neural conduit as an alternative treatment for peripheral nerve injury. In this study, a BDNF-loaded chitosan-based mimetic mussel polymer conduit was prepared. Its unique adhesion characteristics allow it to be suture-free, improve the microenvironment of the injury site, and have good antibacterial properties. Researchers utilized a rat sciatic nerve injury model to evaluate the progression of nerve regeneration at the 12-week postoperative stage. The findings of this study indicate that the chitosan-based mimetic mussel polymer conduit loaded with BDNF had a substantial positive effect on myelination and axon outgrowth. The observed impact demonstrated a favorable outcome in terms of sciatic nerve regeneration and subsequent functional restoration in rats with a 15-mm gap. Hence, this approach is promising for nerve tissue regeneration during peripheral nerve injury.

10.
J Pharm Anal ; 14(6): 100932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39021382

RESUMO

Unlike chemosynthetic drugs designed for specific molecular and disease targets, active small-molecule natural products typically have a wide range of bioactivities and multiple targets, necessitating extensive screening and development. To address this issue, we propose a strategy for the direct in situ microdynamic examination of potential drug candidates to rapidly identify their effects and mechanisms of action. As a proof-of-concept, we investigated the behavior of mussel oligosaccharide (MOS-1) by tracking the subcellular dynamics of fluorescently labeled MOS-1 in cultured cells. We recorded the entire dynamic process of the localization of fluorescein isothiocyanate (FITC)-MOS-1 to the lysosomes and visualized the distribution of the drug within the cell. Remarkably, lysosomes containing FITC-MOS-1 actively recruited lipid droplets, leading to fusion events and increased cellular lipid consumption. These drug behaviors confirmed MOS-1 is a candidate for the treatment of lipid-related diseases. Furthermore, in a high-fat HepG2 cell model and in high-fat diet-fed apolipoprotein E (ApoE) -/- mice, MOS-1 significantly promoted triglyceride degradation, reduced lipid droplet accumulation, lowered serum triglyceride levels, and mitigated liver damage and steatosis. Overall, our work supports the prioritization of in situ visual monitoring of drug location and distribution in subcellular compartments during the drug development phase, as this methodology contributes to the rapid identification of drug indications. Collectively, this methodology is significant for the screening and development of selective small-molecule drugs, and is expected to expedite the identification of candidate molecules with medicinal effects.

11.
J Colloid Interface Sci ; 672: 329-337, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850860

RESUMO

Mussel-inspired polydopamine (PDA) coating has been utilized extensively as versatile deposition strategies that can functionalize surfaces of virtually all substrates. However, the strong adhesion, stability and intermolecular interaction of PDA make it inefficient in certain applications. Herein, a green and efficient photocatalytic method was reported to remove adhesion and degrade PDA by using TiO2-H2O2 as photocatalyst. The photodegradation process of the PDA spheres was first undergone nanoscale disassembly to form soluble PDA oligomers or well-dispersed nanoparticles. Most of the disassembled PDA can be photodegraded and finally mineralized to CO2 and H2O. Various PDA coated templates and PDA hollow structures can be photodegraded by this strategy. Such process provides a practical strategy for constructing the patterned and gradient surfaces by the "top-down" method under the control of light scope and intensity. This sequential degradation strategy is beneficial to achieve the decomposition of highly crosslinked polymers.

12.
J Nanobiotechnology ; 22(1): 320, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849820

RESUMO

Simultaneously modulating the inflammatory microenvironment and promoting local bone regeneration is one of the main challenges in treating bone defects. In recent years, osteoimmunology has revealed that the immune system plays an essential regulatory role in bone regeneration and that macrophages are critical components. In this work, a mussel-inspired immunomodulatory and osteoinductive dual-functional hydroxyapatite nano platform (Gold/hydroxyapatite nanocomposites functionalized with polydopamine - PDA@Au-HA) is developed to accelerate bone tissues regeneration by regulating the immune microenvironment. PDA coating endows nanomaterials with the ability to scavenge reactive oxygen species (ROS) and anti-inflammatory properties, and it also exhibits an immunomodulatory ability to inhibit M1 macrophage polarization and activate M2 macrophage secretion of osteogenesis-related cytokines. Most importantly, this nano platform promotes the polarization of M2 macrophages and regulates the crosstalk between macrophages and pre-osteoblast cells to achieve bone regeneration. Au-HA can synergistically promote vascularized bone regeneration through sustained release of Ca and P particles and gold nanoparticles (NPs). This nano platform has a synergistic effect of good compatibility, scavenging of ROS, and anti-inflammatory and immunomodulatory capability to accelerate the bone repair process. Thus, our research offers a possible therapeutic approach by exploring PDA@Au-HA nanocomposites as a bifunctional platform for tissue regeneration.


Assuntos
Bivalves , Regeneração Óssea , Durapatita , Ouro , Indóis , Macrófagos , Osteogênese , Regeneração Óssea/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Animais , Camundongos , Ouro/química , Ouro/farmacologia , Bivalves/química , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Osteogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Polímeros/química , Polímeros/farmacologia , Nanocompostos/química , Nanopartículas Metálicas/química , Osteoblastos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Citocinas/metabolismo
13.
Stem Cell Res ; 79: 103476, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38941882

RESUMO

Cardiovascular disease remains a global health concern. Stem cell therapy utilizing human cardiac progenitor cells (hCPCs) shows promise in treating cardiac vascular disease. However, limited availability and senescence of hCPCs hinder their widespread use. To address these challenges, researchers are exploring innovative approaches. In this study, a bioengineered cell culture plate was developed to mimic the natural cardiac tissue microenvironment. It was coated with a combination of extracellular matrix (ECM) peptide motifs and mussel adhesive protein (MAP). The selected ECM peptide motifs, derived from fibronectin and vitronectin, play crucial roles in hCPCs. Results revealed that the Fibro-P and Vitro-P coated plates significantly improved hCPC adhesion, proliferation, migration, and differentiation compared to uncoated plates. Additionally, long-term culture on the coated plates delayed cellular senescence and maintained hCPC stemness. These enhancements were attributed to the activation of integrin downstream signaling pathways. The findings suggest that the engineered ECM peptide motif-MAP-coated plates hold potential for enhancing the therapeutic efficacy of stem cell-based therapies in cardiac tissue engineering and regenerative medicine.

14.
G3 (Bethesda) ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935082

RESUMO

The smooth-shelled blue mussel, Mytilus edulis is part of the Mytilus species complex, encompassing at least three putative species: M. edulis, M. galloprovincialis and M. trossulus. These three species occur on both sides of the Atlantic and hybridize in nature, and both M. edulis and M. galloprovincialis are important aquaculture species. They are also invasive species in many parts of the world. Here, we present a chromosome-level assembly of Mytilus edulis. We used a combination of PacBio sequencing and Dovetail's Omni-C technology to generate an assembly with 14 long scaffolds containing 94% of the predicted length of the M. edulis genome (1.6 out of 1.7 Gb). Assembly statistics were total length 1.65 Gb, N50 = 116 Mb, L50 = 7 and, L90 = 13. BUSCO analysis showed 92.55% eukaryote BUSCOs identified. AB-Initio annotation using RNA-seq from mantle, gills, muscle and foot predicted 47,128 genes. These gene models were combined with IsoSeq validation resulting in 45,379 full CDS protein sequences and 129,708 isoforms. Using GBS and shotgun sequencing, we also sequenced several eastern Canadian populations of Mytilus to characterize single-nucleotide as well as structural variance. This high-quality genome for M. edulis provides a platform to develop tools that can be used in breeding, molecular ecology and evolution to address questions of both commercial and environmental perspectives.

15.
Int J Biol Macromol ; 273(Pt 1): 132965, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851615

RESUMO

Curcumin demonstrated therapeutic potential for cancer. However, its medical application is limited due to low solubility, poor stability and low absorption rate. Here, we used the mussel-inspired functional protein (MPKE) to fabricate the curcumin-carrying nanoparticle (Cur-MPKE) for encapsulating and delivering curcumin. The protein MPKE is composed of the mussel module and zwitterionic peptide. The Dopa group bonding characteristic of the mussel module was leveraged for the self-assembly of nanoparticles, while the superhydrophilic property of the zwitterionic peptide was utilized to enhance the stability of nanoparticles. As expected, MPKE and Cur are tightly bound through hydrogen bonds and dynamic imide bonds to form nanoparticles. Cur-MPKE showed improved solubility and stability in aqueous solutions as well as excellent biocompatibility. Besides, Cur-MPKE also exhibited pH-triggered release and enhanced uptake of curcumin by tumor cells, promoting the antioxidant activity and antitumor effect of curcumin. Moreover, systemic experiments of Cur-MPKE to rats demonstrated that Cur-MPKE significantly inhibited tumor tissue growth and proliferation without causing obvious systemic toxicity. This work provides a new strategy for fabricating the delivery system of curcumin with improved stability, sustainability and bioavailability.


Assuntos
Antineoplásicos , Bivalves , Curcumina , Nanopartículas , Curcumina/química , Curcumina/farmacologia , Curcumina/administração & dosagem , Animais , Nanopartículas/química , Bivalves/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Humanos , Ratos , Portadores de Fármacos/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Proteínas/química , Antioxidantes/química , Antioxidantes/farmacologia , Solubilidade
16.
Mar Pollut Bull ; 204: 116533, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833949

RESUMO

Coastal waters face significant anthropogenic stress, particularly from tourism, exacerbating pollution, especially in areas like touristic islands. Ischia, the largest island in the Gulf of Naples and part of the Regno di Nettuno Marine Protected Area, suffers from pollution due to tourism and maritime traffic. During the initial SARS-CoV-2 lockdown from March to June 2020, Ischia was isolated, providing a unique opportunity to study pollutant release and its impact on coastal ecosystems. Adult Mytilus galloprovincialis mussels were transplanted to three sites on the island for active biomonitoring. Accumulation of chemicals in tissues and biomarkers related to metabolism, detoxification, and oxidative stress were measured. Results indicated that pollutants from daily activities entered the sea, affecting filter feeders. Translocated organisms showed modulated metabolic functions and biochemical changes, highlighting coastal vulnerability and calling for conservation efforts.


Assuntos
Monitoramento Biológico , Mytilus , Animais , Humanos , COVID-19 , Turismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Ilhas , Atividades Humanas , Itália , SARS-CoV-2
17.
Environ Pollut ; 356: 124312, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852661

RESUMO

Neonicotinoid insecticides specifically target insect subtypes of nicotinic acetylcholine receptors. Acetamiprid (ACE: C10H11ClN4), the neonicotinoid insecticide, is used to control crop insect pests worldwide. It is a nitrile, monochloropyridine, and carboxamidine that is highly soluble and accessible to waterways. There, it causes neurotoxic and oxidative perturbance to non-target organisms. The unionid mussel Chamabradia rubens is a common Northern River Nile suspension feeder. The current study aimed to assess ACE filtration from waters by C. rubens, and whether this biological power can reduce ACE effects on fish. Removal of ACE by C. rubens was assessed using LC-MS/MS. Zebrafish Danio rerio adults were exposed to different sublethal doses of ACE in the presence or absence of C. rubens in their aquaria. The results showed that mussels could remove significant ACE amounts from water, where it accumulated mostly in the digestive gland. The presence of C.rubens in zebrafish aquaria having ACE was accompanied by significant upregulation of antioxidant enzyme gene transcripts and total H2O2 scavenging, in contrast to mussel-free ACE-exposed groups. Meanwhile, liver triglycerides rose 5-6-fold in response to ACE in the "Fish-Only" groups, indicating an ACE-induced hepatotoxicity. Also, Insulin-like growth factor 1 (igf1) and fish body mass increased more in "Fish + Mussel" groups than in the "Fish-Only" ones. In aggregate, these findings suggest that the Nile mussel could reduce the oxidative stress and metabolic changes induced in fish by ACE. This can contribute valuable environmental and economic benefits upon the use of this mussel as a biofilter.

18.
Chempluschem ; : e202400101, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822555

RESUMO

Mussel-inspired coating is a substrate-independent surface modification technology. However, its application is limited by time-consuming, tailoring specific functions require tedious secondary reaction. To overcome those drawbacks, a strategy for the rapid fabrication of diverse coatings by expanding the library of precursors using oxidation coupled with polyamine was proposed. Based on DFT simulations of the reaction pathways, a method was developed to achieve rapid deposition of coatings by coupling oxidation and polyamines, which simultaneously accelerated the oxidation of precursors and polymer chain growth. The feasibility and generalizability of the strategy was validated by the rapid coating of 10 catechol derivatives and polyamines on various substrates. The surface properties of the substrates such as functional group densities, Zeta potential and contact angles can be easily tuned. The tailored surface engineering application of the strategy was demonstrated by the heavy metal adsorbents and superwetting materials prepared through the delicate combination of different building blocks. Our strategy was flexible in terms of diverse surface engineering design which greatly enriched the connotation of mussel-inspired technique.

19.
Adv Sci (Weinh) ; : e2401833, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922775

RESUMO

Inadequate osseointegration at the interface is a key factor in orthopedic implant failure. Mechanistically, traditional orthopedic implant interfaces fail to precisely match natural bone regeneration processes in vivo. In this study, a novel biomimetic coating on titanium substrates (DPA-Co/GFO) through a mussel adhesion-mediated ion coordination and molecular clicking strategy is engineered. In vivo and in vitro results confirm that the coating exhibits excellent biocompatibility and effectively promotes angiogenesis and osteogenesis. Crucially, the biomimetic coating targets the integrin α2ß1 receptor to promote M2 macrophage polarization and achieves a synergistic effect between immunomodulation and vascularized bone regeneration, thereby maximizing osseointegration at the interface. Mechanical push-out tests reveal that the pull-out strength in the DPA-Co/GFO group is markedly greater than that in the control group (79.04 ± 3.20 N vs 31.47 ± 1.87 N, P < 0.01) and even surpasses that in the sham group (79.04 ± 3.20 N vs 63.09 ± 8.52 N, P < 0.01). In summary, the novel biomimetic coating developed in this study precisely matches the natural process of bone regeneration in vivo, enhancing interface-related osseointegration and showing considerable potential for clinical translation and applications.

20.
Bull Environ Contam Toxicol ; 112(6): 78, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796607

RESUMO

Anodonta woodiana samples from Xidong Water Works and Mashan in Taihu Lake, Yiyang near Dongting Lake, and Taiping Harbor in Gehu Lake preserved in a "specimen bank" established for the "Freshwater Mussel Watch" monitoring program were used to determine the historical metal backgrounds from different waters in the present study. The elements Co, Ni, Mo, Cd, Al, Cr, Mn, Fe, Cu, Zn, As, Ba, and Pb were determined using A. woodiana from four lacustrine sites. The results showed that Al, Cr, Mn, Fe, Cu, Zn, As, Ba, and Pb were all detected, whereas Co, Ni, Mo, and Cd were below the detection limits of 0.0165, 0.0106, 0.0189 and 0.0182 µg kg- 1, respectively. In particular, A. woodiana was noted to be an unusual Mn hyperaccumulator (ranged from 5124.09 to 13015.47 µg g- 1). The results of discriminant analysis showed that the four water samples could be accurately separated. This difference has the potential to infer the background difference of heavy metal pollution in different lacustrine habitats.


Assuntos
Monitoramento Ambiental , Lagos , Metais Pesados , Poluentes Químicos da Água , China , Poluentes Químicos da Água/análise , Lagos/química , Metais Pesados/análise , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA