Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Sci Rep ; 14(1): 15422, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965264

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited disorder characterized by left ventricular hypertrophy and diastolic dysfunction, and increases the risk of arrhythmias and heart failure. Some patients with HCM develop a dilated phase of hypertrophic cardiomyopathy (D-HCM) and have poor prognosis; however, its pathogenesis is unclear and few pathological models exist. This study established disease-specific human induced pluripotent stem cells (iPSCs) from a patient with D-HCM harboring a mutation in MYBPC3 (c.1377delC), a common causative gene of HCM, and investigated the associated pathophysiological mechanisms using disease-specific iPSC-derived cardiomyocytes (iPSC-CMs). We confirmed the expression of pluripotent markers and the ability to differentiate into three germ layers in D-HCM patient-derived iPSCs (D-HCM iPSCs). D-HCM iPSC-CMs exhibited disrupted myocardial sarcomere structures and an increased number of damaged mitochondria. Ca2+ imaging showed increased abnormal Ca2+ signaling and prolonged decay time in D-HCM iPSC-CMs. Cell metabolic analysis revealed increased basal respiration, maximal respiration, and spare-respiratory capacity in D-HCM iPSC-CMs. RNA sequencing also showed an increased expression of mitochondrial electron transport system-related genes. D-HCM iPSC-CMs showed abnormal Ca2+ handling and hypermetabolic state, similar to that previously reported for HCM patient-derived iPSC-CMs. Although further studies are required, this is expected to be a useful pathological model for D-HCM.


Assuntos
Cálcio , Cardiomiopatia Hipertrófica , Proteínas de Transporte , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Masculino
2.
Adv Exp Med Biol ; 1441: 417-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884723

RESUMO

This chapter will describe basic structural and functional features of the contractile apparatus of muscle cells of the heart, namely, cardiomyocytes and smooth muscle cells. Cardiomyocytes form the contractile myocardium of the heart, while smooth muscle cells form the contractile coronary vessels. Both muscle types have distinct properties and will be considered with respect to their cellular appearance (brick-like cross-striated versus spindle-like smooth), arrangement of contractile proteins (sarcomeric versus non-sarcomeric organization), calcium activation mechanisms (thin-filament versus thick-filament regulation), contractile features (fast and phasic versus slow and tonic), energy metabolism (high oxygen versus low oxygen demand), molecular motors (type II myosin isoenzymes with high adenosine diphosphate [ADP]-release rate versus myosin isoenzymes with low ADP-release rates), chemomechanical energy conversion (high adenosine triphosphate [ATP] consumption and short duty ratio versus low ATP consumption and high duty ratio of myosin II cross-bridges [XBs]), and excitation-contraction coupling (calcium-induced calcium release versus pharmacomechanical coupling). Part of the work has been published (Neuroscience - From Molecules to Behavior", Chap. 22, Galizia and Lledo eds 2013, Springer-Verlag; with kind permission from Springer Science + Business Media).


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Humanos , Contração Miocárdica/fisiologia , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cálcio/metabolismo , Metabolismo Energético , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Acoplamento Excitação-Contração/fisiologia
3.
J Mol Cell Cardiol ; 191: 27-39, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648963

RESUMO

Approximately 40% of hypertrophic cardiomyopathy (HCM) mutations are linked to the sarcomere protein cardiac myosin binding protein-C (cMyBP-C). These mutations are either classified as missense mutations or truncation mutations. One mutation whose nature has been inconsistently reported in the literature is the MYBPC3-c.772G > A mutation. Using patient-derived human induced pluripotent stem cells differentiated to cardiomyocytes (hiPSC-CMs), we have performed a mechanistic study of the structure-function relationship for this MYBPC3-c.772G > A mutation versus a mutation corrected, isogenic cell line. Our results confirm that this mutation leads to exon skipping and mRNA truncation that ultimately suggests ∼20% less cMyBP-C protein (i.e., haploinsufficiency). This, in turn, results in increased myosin recruitment and accelerated myofibril cycling kinetics. Our mechanistic studies suggest that faster ADP release from myosin is a primary cause of accelerated myofibril cross-bridge cycling due to this mutation. Additionally, the reduction in force generating heads expected from faster ADP release during isometric contractions is outweighed by a cMyBP-C phosphorylation mediated increase in myosin recruitment that leads to a net increase of myofibril force, primarily at submaximal calcium activations. These results match well with our previous report on contractile properties from myectomy samples of the patients from whom the hiPSC-CMs were generated, demonstrating that these cell lines are a good model to study this pathological mutation and extends our understanding of the mechanisms of altered contractile properties of this HCM MYBPC3-c.772G > A mutation.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Haploinsuficiência , Células-Tronco Pluripotentes Induzidas , Mutação , Miócitos Cardíacos , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miosinas/metabolismo , Miosinas/genética , Diferenciação Celular/genética , Cinética
4.
Front Physiol ; 15: 1370539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487262

RESUMO

Myosin binding protein C (MyBPC) is a multi-domain protein with each region having a distinct functional role in muscle contraction. The central domains of MyBPC have often been overlooked due to their unclear roles. However, recent research shows promise in understanding their potential structural and regulatory functions. Understanding the central region of MyBPC is important because it may have specialized function that can be used as drug targets or for disease-specific therapies. In this review, we provide a brief overview of the evolution of our understanding of the central domains of MyBPC in regard to its domain structures, arrangement and dynamics, interaction partners, hypothesized functions, disease-causing mutations, and post-translational modifications. We highlight key research studies that have helped advance our understanding of the central region. Lastly, we discuss gaps in our current understanding and potential avenues to further research and discovery.

5.
Biochemistry (Mosc) ; 89(1): 116-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467549

RESUMO

Cardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C is located on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both kinetics of the ATP hydrolysis cycle and lifetime of the cross-bridge, as well as calcium regulation of the actin-myosin interaction, thereby modulating contractile function of myocardium. The role of cMyBP-C in atrial contraction has not been practically studied. We examined effect of the N-terminal C0-C1-m-C2 (C0-C2) fragment of cMyBP-C on actin-myosin interaction using ventricular and atrial myosin in an in vitro motility assay. The C0-C2 fragment of cMyBP-C significantly reduced the maximum sliding velocity of thin filaments on both myosin isoforms and increased the calcium sensitivity of the actin-myosin interaction. The C0-C2 fragment had different effects on the kinetics of ATP and ADP exchange, increasing the affinity of ventricular myosin for ADP and decreasing the affinity of atrial myosin. The effect of the C0-C2 fragment on the activation of the thin filament depended on the myosin isoforms. Atrial myosin activates the thin filament less than ventricular myosin, and the C0-C2 fragment makes these differences in the myosin isoforms more pronounced.


Assuntos
Actinas , Proteína C , Actinas/metabolismo , Proteína C/metabolismo , Proteínas de Transporte/metabolismo , Cálcio/metabolismo , Miosinas Atriais , Miosinas Ventriculares/metabolismo , Miosinas/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Isoformas de Proteínas/metabolismo , Ligação Proteica
6.
Bull Exp Biol Med ; 176(3): 324-327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38336971

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) located in the C-zone of myocyte sarcomere is involved in the regulation of myocardial contraction. Its N-terminal domains C0, C1, C2, and the m-motif between C1 and C2 can bind to the myosin head and actin of the thin filament and affect the characteristics of their interaction. Measurements using an optical trap showed that the C0-C2 fragment of cMyBP-C increases the interaction time of cardiac myosin with the actin filament, while in an in vitro motility assay, it dose-dependently reduces the sliding velocity of actin filaments. Thus, it was found that the N-terminal part of cMyBP-C affects the kinetics of the myosin cross-bridge.


Assuntos
Actinas , Proteínas de Transporte , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas Cardíacas/metabolismo , Ligação Proteica/fisiologia , Miocárdio/metabolismo
7.
Trends Pharmacol Sci ; 45(3): 191-192, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302402

RESUMO

Muscle contraction is orchestrated by the well-understood thin filaments and the markedly complex thick filaments. Studies by Dutta et al. and Tamborrini et al., discussed here, have unravelled the structure of the mammalian heart thick filament in exquisite near-atomic detail and pave the way for understanding physiological modulation pathways and mutation-induced dysfunction and for designing potential drugs to modify defects.


Assuntos
Miocárdio , Sarcômeros , Humanos , Animais , Miocárdio/metabolismo , Sarcômeros/metabolismo , Mamíferos
8.
J Comp Physiol B ; 194(1): 41-45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38347296

RESUMO

A brief tetanic stimulation has a very different effect on the subsequent isometric twitch force of fast and slow skeletal muscles. Fast muscle responds with an enhanced twitch force which doubles that of the pre-tetanic value, whereas slow muscle depresses the post-tetanic twitch by about 20%. Twitch potentiation of fast muscle has long been known to be due to myosin light chain 2 phosphorylation. It is proposed that post-tetanic twitch depression in slow muscle is due to the dephosphorylation of the slow isoform of the thick filament protein, myosin-binding protein-C, by Ca2+/calmodulin-activated phosphatase calcineurin, whilst its phosphorylation underlies the force enhancement due to ß-adrenergic stimulation in slow and fast muscle.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Animais , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Fibras Musculares de Contração Rápida/fisiologia
9.
J Mol Biol ; 436(6): 168498, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387550

RESUMO

Cardiac muscle contraction occurs due to repetitive interactions between myosin thick and actin thin filaments (TF) regulated by Ca2+ levels, active cross-bridges, and cardiac myosin-binding protein C (cMyBP-C). The cardiac TF (cTF) has two nonequivalent strands, each comprised of actin, tropomyosin (Tm), and troponin (Tn). Tn shifts Tm away from myosin-binding sites on actin at elevated Ca2+ levels to allow formation of force-producing actomyosin cross-bridges. The Tn complex is comprised of three distinct polypeptides - Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. The molecular mechanism of their collective action is unresolved due to lack of comprehensive structural information on Tn region of cTF. C1 domain of cMyBP-C activates cTF in the absence of Ca2+ to the same extent as rigor myosin. Here we used cryo-EM of native cTFs to show that cTF Tn core adopts multiple structural conformations at high and low Ca2+ levels and that the two strands are structurally distinct. At high Ca2+ levels, cTF is not entirely activated by Ca2+ but exists in either partially or fully activated state. Complete dissociation of TnI C-terminus is required for full activation. In presence of cMyBP-C C1 domain, Tn core adopts a fully activated conformation, even in absence of Ca2+. Our data provide a structural description for the requirement of myosin to fully activate cTFs and explain increased affinity of TnC to Ca2+ in presence of active cross-bridges. We suggest that allosteric coupling between Tn subunits and Tm is required to control actomyosin interactions.


Assuntos
Actinas , Troponina , Actinas/metabolismo , Actomiosina , Cálcio/metabolismo , Microscopia Crioeletrônica , Miosinas/química , Tropomiosina/química , Troponina/química , Troponina/metabolismo
10.
J Neurol Sci ; 457: 122864, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185014

RESUMO

Congenital myopathy with tremor (MYOTREM) is a recently described disorder characterized by mild myopathy and a postural and intention tremor present since early infancy. MYOTREM is associated with pathogenic variants in MYBPC1 which encodes slow myosin-binding protein C, a sarcomere protein with regulatory and structural roles. Here, we describe a family with three generations of variably affected members exhibiting a novel variant in MYBPC1 (c.656 T > C, p.Leu219Pro). Among the unique features of affected family members is the persistence of tremor in sleep. We also present the first muscle magnetic resonance images for this disorder, and report muscle atrophy and fatty infiltration.


Assuntos
Doenças Musculares , Tremor , Humanos , Família , Mutação/genética , Tremor/diagnóstico por imagem , Tremor/genética
11.
J Mol Cell Cardiol ; 186: 125-137, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008210

RESUMO

N-terminal cardiac myosin-binding protein C (cMyBP-C) domains (C0-C2) bind to thick (myosin) and thin (actin) filaments to coordinate contraction and relaxation of the heart. These interactions are regulated by phosphorylation of the M-domain situated between domains C1 and C2. In cardiomyopathies and heart failure, phosphorylation of cMyBP-C is significantly altered. We aimed to investigate how cMyBP-C interacts with myosin and actin. We developed complementary, high-throughput, C0-C2 FRET-based binding assays for myosin and actin to characterize the effects due to 5 HCM-linked variants or functional mutations in unphosphorylated and phosphorylated C0-C2. The assays indicated that phosphorylation decreases binding to both myosin and actin, whereas the HCM mutations in M-domain generally increase binding. The effects of mutations were greatest in phosphorylated C0-C2, and some mutations had a larger effect on actin than myosin binding. Phosphorylation also altered the spatial relationship of the probes on C0-C2 and actin. The magnitude of these structural changes was dependent on C0-C2 probe location (C0, C1, or M-domain). We conclude that binding can differ between myosin and actin due to phosphorylation or mutations. Additionally, these variables can change the mode of binding, affecting which of the interactions in cMyBP-C N-terminal domains with myosin or actin take place. The opposite effects of phosphorylation and M-domain mutations is consistent with the idea that cMyBP-C phosphorylation is critical for normal cardiac function. The precision of these assays is indicative of their usefulness in high-throughput screening of drug libraries for targeting cMyBP-C as therapy.


Assuntos
Citoesqueleto de Actina , Actinas , Proteínas de Transporte , Actinas/metabolismo , Fosforilação , Citoesqueleto de Actina/metabolismo , Miosinas/genética , Miosinas/metabolismo , Mutação
12.
J Med Biochem ; 42(4): 665-674, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38084246

RESUMO

Background: Cardiac myosin-binding protein C (cMyC) is a novel cardio-specific biomarker of potential diagnostic and prognostic value for cardiovascular events. This study aims to determine reference values for cMyC and identify biological determinants of its concentration. Methods: A population of 488 presumably healthy adults were enrolled to define biological determinants which affect cMyC concentrations in serum. Concentrations of cMyC were assessed using enzyme-linked immunosorbent assays from commercially available kits. Eligibility for inclusion in this study evaluated all subjects' anthropometric, demographic and laboratory measurements. After applying strict inclusion criteria, a reference population (n=150) was defined and used to determine reference values. Reference values were derived using a robust method.

13.
Exp Cell Res ; 433(2): 113859, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000772

RESUMO

Ischemic preconditioning (IPC) has been considered as the most important mean to protect against ischemia/reperfusion (I/R) induced heart injury. It has been reported that cardiac myosin binding protein-C (cMyBP-C) phosphorylation plays an essential role in cardiac protection against I/R-induced heart injury. However, it is still obscured whether IPC-mediated cardiac protection is causally related to cMyBP-C phosphorylation and proteolysis and, if so, what the underlying mechanism is. In this study, IPC was found to increase the phosphorylation level of cMyBP-C, companying with the decreased calpain activity in the collected perfusate samples. Mechanistically, we confirmed that IPC promoted cMyBP-C phosphorylation and inhibited calpain-mediated cMyBP-C proteolysis. Moreover, inhibition of calpain activity significantly increased the phosphorylated cMyBP-C level by using calpain inhibitor (MG-101), and subsequently promoted stabilization and secretion of cMyBP-C. Functionally, adeno-associated virus (AAV)-mediated overexpression of mutated phosphorylation motif site of cMyBP-C exhibited impaired IPC-mediated cardiac protection via proteolysis of the full-length cMyBP-C protein. We concluded that IPC promoted cMyBP-C phosphorylation via inhibition of calpain-mediated proteolysis and participated in IPC-mediated protection against I/R induced heart injury.


Assuntos
Traumatismos Cardíacos , Precondicionamento Isquêmico , Traumatismo por Reperfusão , Humanos , Calpaína/metabolismo , Proteólise , Fosforilação , Traumatismo por Reperfusão/prevenção & controle
14.
J Biol Chem ; 299(12): 105369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865311

RESUMO

Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.


Assuntos
Proteínas de Transporte , Descoberta de Drogas , Insuficiência Cardíaca , Miofibrilas , Bibliotecas de Moléculas Pequenas , Humanos , Actinas/metabolismo , Descoberta de Drogas/métodos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Miofibrilas/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Técnicas Biossensoriais , Adenosina Trifosfatases/metabolismo , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência
15.
J Mol Cell Cardiol ; 185: 65-76, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844837

RESUMO

Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the cardiac myosin binding protein-C (cMyBP-C) encoding gene MYBPC3. In the Netherlands, approximately 25% of patients carry the MYBPC3c.2373InsG founder mutation. Most patients are heterozygous (MYBPC3+/InsG) and have highly variable phenotypic expression, whereas homozygous (MYBPC3InsG/InsG) patients have severe HCM at a young age. To improve understanding of disease progression and genotype-phenotype relationship based on the hallmarks of human HCM, we characterized mice with CRISPR/Cas9-induced heterozygous and homozygous mutations. At 18-28 weeks of age, we assessed the cardiac phenotype of Mybpc3+/InsG and Mybpc3InsG/InsG mice with echocardiography, and performed histological analyses. Cytoskeletal proteins and cardiomyocyte contractility of 3-4 week old and 18-28 week old Mybpc3c.2373InsG mice were compared to wild-type (WT) mice. Expectedly, knock-in of Mybpc3c.2373InsG resulted in the absence of cMyBP-C and our 18-28 week old homozygous Mybpc3c.2373InsG model developed cardiac hypertrophy and severe left ventricular systolic and diastolic dysfunction, whereas HCM was not evident in Mybpc3+/InsG mice. Mybpc3InsG/InsG cardiomyocytes also presented with slowed contraction-relaxation kinetics, to a greater extent in 18-28 week old mice, partially due to increased levels of detyrosinated tubulin and desmin, and reduced cardiac troponin I (cTnI) phosphorylation. Impaired cardiomyocyte contraction-relaxation kinetics were successfully normalized in 18-28 week old Mybpc3InsG/InsG cardiomyocytes by combining detyrosination inhibitor parthenolide and ß-adrenergic receptor agonist isoproterenol. Both the 3-4 week old and 18-28 week old Mybpc3InsG/InsG models recapitulate HCM, with a severe phenotype present in the 18-28 week old model.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Humanos , Camundongos , Animais , Países Baixos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação , Fenótipo , Proteínas do Citoesqueleto/genética
16.
J Cardiovasc Dev Dis ; 10(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37754829

RESUMO

Athletic performance is a multifactorial trait influenced by a complex interaction of environmental and genetic factors. Over the last decades, understanding and improving elite athletes' endurance and performance has become a real challenge for scientists. Significant tools include but are not limited to the development of molecular methods for talent identification, personalized exercise training, dietary requirements, prevention of exercise-related diseases, as well as the recognition of the structure and function of the genome in elite athletes. Investigating the genetic markers and phenotypes has become critical for elite endurance surveillance. The identification of genetic variants contributing to a predisposition for excellence in certain types of athletic activities has been difficult despite the relatively high genetic inheritance of athlete status. Metabolomics can potentially represent a useful approach for gaining a thorough understanding of various physiological states and for clarifying disorders caused by strength-endurance physical exercise. Based on a previous GWAS study, this manuscript aims to discuss the association of specific single-nucleotide polymorphisms (SNPs) located in the MYBPC3 gene encoding for cardiac MyBP-C protein with endurance athlete status. MYBPC3 is linked to elite athlete heart remodeling during or after exercise, but it could also be linked to the phenotype of cardiac hypertrophy (HCM). To make the distinction between both phenotypes, specific metabolites that are influenced by variants in the MYBPC3 gene are analyzed in relation to elite athletic performance and HCM. These include theophylline, ursodeoxycholate, quinate, and decanoyl-carnitine. According to the analysis of effect size, theophylline, quinate, and decanoyl carnitine increase with endurance while decreasing with cardiovascular disease, whereas ursodeoxycholate increases with cardiovascular disease. In conclusion, and based on our metabolomics data, the specific effects on athletic performance for each MYBPC3 SNP-associated metabolite are discussed.

17.
Front Cardiovasc Med ; 10: 1238515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600050

RESUMO

With the advent of next-generation whole genome sequencing, many variants of uncertain significance (VUS) have been identified in individuals suffering from inheritable hypertrophic cardiomyopathy (HCM). Unfortunately, this classification of a genetic variant results in ambiguity in interpretation, risk stratification, and clinical practice. Here, we aim to review some basic science methods to gain a more accurate characterization of VUS in HCM. Currently, many genomic data-based computational methods have been developed and validated against each other to provide a robust set of resources for researchers. With the continual improvement in computing speed and accuracy, in silico molecular dynamic simulations can also be applied in mutational studies and provide valuable mechanistic insights. In addition, high throughput in vitro screening can provide more biologically meaningful insights into the structural and functional effects of VUS. Lastly, multi-level mathematical modeling can predict how the mutations could cause clinically significant organ-level dysfunction. We discuss emerging technologies that will aid in better VUS characterization and offer a possible basic science workflow for exploring the pathogenicity of VUS in HCM. Although the focus of this mini review was on HCM, these basic science methods can be applied to research in dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (ACM), or other genetic cardiomyopathies.

19.
J Muscle Res Cell Motil ; 44(3): 209-215, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37133758

RESUMO

The techniques of X-ray protein crystallography, NMR and high-resolution cryo-electron microscopy have all been used to determine the high-resolution structure of proteins. The most-commonly used method, however, remains X-ray crystallography but it does rely heavily on the production of suitable crystals. Indeed, the production of diffraction quality crystals remains the rate-limiting step for most protein systems. This mini-review highlights the crystallisation trials that used existing and newly developed crystallisation methods on two muscle protein targets - the actin binding domain (ABD) of α-actinin and the C0-C1 domain of human cardiac myosin binding protein C (cMyBP-C). Furthermore, using heterogenous nucleating agents the crystallisation of the C1 domain of cMyBP-C was successfully achieved in house along with preliminary actin binding studies using electron microscopy and co-sedimentation assays .


Assuntos
Actinas , Proteínas Musculares , Humanos , Actinas/metabolismo , Proteínas Musculares/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Actinina/metabolismo
20.
JACC Basic Transl Sci ; 8(2): 174-185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908663

RESUMO

Diabetes mellitus (DM) is a main risk factor for diastolic dysfunction (DD) and heart failure with preserved ejection fraction. High-fat diet (HFD) mice presented with diabetes mellitus, DD, higher cardiac interleukin (IL)-1ß levels, and proinflammatory cardiac macrophage accumulation. DD was significantly ameliorated by suppressing IL-1ß signaling or depleting macrophages. Mice with macrophages unable to adopt a proinflammatory phenotype were low in cardiac IL-1ß levels and were resistant to HFD-induced DD. IL-1ß enhanced mitochondrial reactive oxygen species (mitoROS) in cardiomyocytes, and scavenging mitoROS improved HFD-induced DD. In conclusion, macrophage-mediated inflammation contributed to HFD-associated DD through IL-1ß and mitoROS production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA