Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-15, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36137567

RESUMO

Cyanobacteria safeguard their photosynthetic machinery from oxidative damage caused by adverse environmental factors such as high-intensity light. Together with many photoprotective compounds, they contain myxoxanthophylls, a rare group of glycosidic carotenoids containing a high number of conjugated double bonds. These carotenoids have been shown to: have strong photoprotective effects, contribute to the integrity of the thylakoid membrane, and upregulate in cyanobacteria under a variety of stress conditions. However, their metabolic potential has not been fully utilized in the stress biology of cyanobacteria and the pharmaceutical industry due to a lack of mechanistic understanding and their insufficient biosynthesis. This review summarizes current knowledge on: biological function, genetic regulation, biotechnological production, and pharmaceutical potential of myxoxanthophyll, with a focus on strain engineering and parameter optimization strategies for increasing their cellular content. The summarized knowledge can be utilized in cyanobacterial metabolic engineering to improve the stress tolerance of useful strains and enhance the commercial-scale synthesis of myxoxanthophyll for pharmaceutical uses.

2.
Chemosphere ; 174: 478-489, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28189893

RESUMO

Toxigenicity of cyanobacteria is widely associated with production of several well-described toxins that pose recognized threats to human and ecosystem health as part of both freshwater eutrophication, and episodic blooms in freshwater and coastal habitats. However, a preponderance of evidence indicates contribution of additional bioactive, and potentially toxic, metabolites. In the present study, the zebrafish (Danio rerio) embryo was used as a model of vertebrate development to identify, and subsequently isolate and characterize, teratogenic metabolites from two representative strains of C. raciborskii. Using this approach, three chemically related carotenoids - and specifically the xanthophyll glycosides, myxol 2'-glycoside (1), 4-ketomyxol 2'-glycoside (2) and 4-hydroxymyxol 2'-glycoside (3) - which are, otherwise, well known pigment molecules from cyanobacteria were isolated as potently teratogenic compounds. Carotenoids are recognized "pro-retinoids" with retinoic acid, as a metabolic product of the oxidative cleavage of carotenoids, established as both key mediator of embryo development and, consequently, a potent teratogen. Accordingly, a comparative toxicological study of chemically diverse carotenoids, as well as apocarotenoids and retinoids, was undertaken. Based on this, a working model of the developmental toxicity of carotenoids as pro-retinoids is proposed, and the teratogenicity of these widespread metabolites is discussed in relation to possible impacts on aquatic vertebrate populations.


Assuntos
Carotenoides/toxicidade , Glicosídeos/toxicidade , Teratogênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cianobactérias/química , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Eutrofização , Água Doce , Tretinoína , Peixe-Zebra
3.
Plant Cell Physiol ; 58(2): 287-297, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837096

RESUMO

Alternative sigma factors belonging to Group 3 are thought to play an important role in the adaptation of cyanobacteria to environmental challenges by altering expression of genes needed for coping with such stresses. In this study, the role of an alternative sigma factor, SigJ, was analyzed in the filamentous nitrogen-fixing cyanobacterium, Anabaena sp. PCC 7120 by knocking down the expression of the sigJ gene (alr0277) employing an antisense RNA-mediated approach. In the absence of any stress, the knock-down (KD0277) or the wild-type strain both grew similarly. Upon exposure to high-intensity light, KD0277 showed substantially reduced bleaching of its pigments, higher photosynthetic activity and consequently better survival than the wild type. KD0277 also showed an enhanced accumulation of two carotenoids, which were identified as myxoxanthophyll and keto-myxoxanthophyll. Further, KD0277 was more tolerant to ammonium-triggered photodamage than the wild type. Moreover, PSII was better protected against photodamage in KD0277 than in the wild type. Down-regulation of sigJ in Anabaena PCC 7120, however, reduced its ability to cope with desiccation. This study demonstrates that down-regulation of the sigJ gene in Anabaena PCC 7120 differentially affects its ability to tolerate two environmentally relevant stresses, i.e. high-intensity light and desiccation.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Fator sigma/metabolismo , Anabaena/genética , Anabaena/efeitos da radiação , Proteínas de Bactérias/genética , Dessecação , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA