RESUMO
This study evaluated the effects of linseed oil (LO) and two-grain sources on growth performance, microbial protein yield (MPY), blood metabolites, and inflammatory markers in Holstein dairy calves. Forty-eight 3-day-old dairy calves (24 males and 24 females) with starting BW of 40.3 ± 1.6 kg were allocated in a completely randomised block design with a 2 × 2 factorial arrangement as follows; (1) Corn grain (CG) with no LO supplementation (CG-NLO), (2) CG with 2.5% LO supplementation (CG-LO), (3) Barley grain (BG) with no LO supplementation (BG-NLO), and (4) BG with 2.5% LO supplementation (BG-LO). The calves were weaned on d 59 but the study lasted for 14 days after weaning (Day 73 of experiment). The results showed that starter feed intake was influenced neither by grain source nor linseed oil. However, average daily gain, BW, hip height, and MPY were improved in calves received BG compared to CG diets. Linseed oil supplementation had no significant effects on growth performance and MPY. During preweaning period, calves fed BG-LO had the greatest feed efficiency and the highest wither height. However, the greatest tumour necrosis factor and serum amyloid A were observed in BG-NLO. Despite, LO supplementation did not influence growth performance of animals per se; however, it reduced circulating inflammatory markers in calves during preweaning period. Based on this study condition, BG is more favourable than CG in dairy calves from the daily gain and microbial protein synthesis perspectives, and supplementing the starters with n-3 FA can be strategy to improve immune performance of calves fed barley-based starter diets.
Assuntos
Hordeum , Zea mays , Animais , Bovinos , Feminino , Masculino , Ração Animal/análise , Peso Corporal , Dieta/veterinária , Suplementos Nutricionais , Imunidade , Óleo de Semente do Linho , Rúmen/metabolismo , DesmameRESUMO
The aim of the study was to investigate the influence of dietary level and ratio of n-6/n-3 fatty acids (FA) on growth, disease progression and expression of immune and inflammatory markers in Atlantic salmon (Salmo salar) following challenge with Paramoeba perurans. Fish (80 g) were fed four different diets with different ratios of n-6/n-3 FA; at 1.3, 2.4 and 6.0 and one diet with ratio of 1.3 combined with a higher level of n-3 FA and n-6 FA. The diet with the n-6/n-3 FA ratio of 6.0 was included to ensure potential n-6 FA effects were revealed, while the three other diets were more commercially relevant n-6/n-3 FA ratios and levels. After a pre-feeding period of 3 months, fish from each diet regime were challenged with a standardized laboratory challenge using a clonal culture of P. perurans at the concentration of 1,000 cells L-1. The subsequent development of the disease was monitored (by gross gill score), and sampling conducted before challenge and at weekly sampling points for 5 weeks post-challenge. Challenge with P. perurans did not have a significant impact on the growth of the fish during the challenge period, but fish given the feed with the highest n-6/n-3 FA ratio had reduced growth compared to the other groups. Total gill score for all surfaces showed a significant increase with time, reaching a maximum at 21 days post-challenge and declined thereafter, irrespective of diet groups. Challenge with P. perurans influenced the mRNA expression of examined genes involved in immune and inflammatory response (TNF-α, iNOS, IL4-13b, GATA-3, IL-1ß, p53, COX2 and PGE2-EP4), but diet did not influence the gene expression. In conclusion, an increase in dietary n-6/n-3 FA ratio influenced the growth of Atlantic salmon challenged with P. perurans; however, it did not alter the mRNA expression of immune genes or progression of the disease.
RESUMO
We reported that breast density (BD) was inversely correlated with the plasma level of DHA in postmenopausal obese, but not in nonobese, women given Lovaza (n-3FA). To identify protein biomarkers for the possible differential effect of n-3FA on BD between obese and nonobese women, an iTRAQ method was performed to analyze plasma from obese and lean women at each time point (baseline, 12 and 24-months, n = 10 per group); 173 proteins with >95% confidence (Unuses Score >1.3 and local false discovery rate estimation <5%) were identified. Comparative analysis between various groups identified several differentially expressed proteins (hemopexin precursor, vitamin D binding protein isoform 1 precursor [VDBP], fibronectin isoform 10 precursor [FN], and α-2 macroglobulin precursor [A2M]). Western blot analysis was performed to verify the differential expression of proteins in the iTRAQ study, and those found to be altered in a tumor protective fashion by an n-3FA rich diet in our previous preclinical study; gelsolin, VDBP, and FN were altered by n-3FA in a manner consistent with reduction in inflammation in obese women. To test the impact of our findings on breast cancer risk reduction by n-3FA, a posthoc analysis revealed that n-3FA administration reduced BD selectively in obese postmenopausal women.
Assuntos
Neoplasias da Mama/sangue , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Obesidade/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Densidade da Mama/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Combinação de Medicamentos , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Feminino , Fibronectinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hemopexina/genética , Humanos , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Obesidade/patologia , Pós-Menopausa/sangue , Proteômica/métodos , Proteína de Ligação a Vitamina D/genética , Adulto Jovem , alfa-Macroglobulinas/genéticaRESUMO
PURPOSE OF REVIEW: Populations with significant dietary fish intake tend to have lower cardiovascular (CV) risk and demonstrable physiologic differences including lower lipid/lipoprotein levels and other direct and indirect effects on the arterial wall and inhibiting factors that promote atherosclerosis. Treatment with high doses of pharmacologic-grade omega-3 fatty acid (n-3FA) supplements achieves significant reductions in triglycerides (TG), non-high-density lipoprotein- (non-HDL-) and TG-rich lipoprotein- (TRL-) cholesterol levels. n-3FA supplements have significant effects on markers of atherosclerosis risk including endothelial function, low-density lipoprotein (LDL) oxidation, cellular and humoral markers of inflammation, hemodynamic factors, and plaque stabilization. This review summarizes the lipid and cardiometabolic effects of prescription-grade n-3FAs and will discuss clinical trials, national/organizational guidelines, and expert opinion on the impact of supplemental n-3FAs on CV health and disease. RECENT FINDINGS: Clinical trial evidence supports use of n-3FAs in individuals with established atherosclerotic cardiovascular disease (ASCVD), but the data either does not support or is lacking for other types of cardiometabolic risk including prevention of stroke, treatment in patients with heart failure, diabetes mellitus and prediabetes, and for primary prevention in the general population. Despite inconsistent findings to support widespread benefit, there is persistent population-wide enthusiasm for n-3FA as a dietary supplement for its cardiometabolic benefits. Fortunately, there are ongoing clinical trials to assess whether the lipid/lipoprotein benefits may be extended to other at-risk populations and whether lower-dose therapy may provide background benefit for primary prevention of ASCVD.
Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Suplementos Nutricionais , HumanosRESUMO
BACKGROUND: Overnutrition of saturated fats and fructose is one of the major factors for the development of nonalcoholic fatty liver disease. Because omega-3 polyunsaturated fatty acids (n-3fa) have established lipid lowering properties, we tested the hypothesis that n-3fa prevents high-fat and fructose-induced fatty liver disease in mice. METHODS: Male C57BL/6J mice were randomly assigned to one of the following diet groups for 14 weeks: normal diet (ND), high-fat lard-based diet (HFD), HFD with fructose (HFD + Fru), high-fat fish-oil diet (FOD), or FOD + Fru. RESULTS: Despite for the development of obesity and insulin resistance, FOD had 65.3% lower (P < 0.001) hepatic triglyceride levels than HFD + Fru, which was blunted to a 38.5% difference (P = 0.173) in FOD + Fru. The lower hepatic triglyceride levels were associated with a lower expression of lipogenic genes LXRα and FASN, as well as the expression of genes associated with fatty acid uptake and triglyceride synthesis, CD36 and SCD1, respectively. Conversely, the blunted hypotriglyceride effect of FOD + Fru was associated with a higher expression of CD36 and SCD1. CONCLUSIONS: During overnutrition, a diet rich in n-3fa may prevent the severity of hepatic steatosis; however, when juxtaposed with a diet high in fructose, the deleterious effects of overnutrition blunted the hypolipidemic effects of n-3fa.
RESUMO
Regular consumption of long-chain n-3 fatty acids (LC n-3 FA) reduces postprandial triacylglycerolaemia. Functional foods and supplements are alternative sources of LC n-3 FA; however, emulsification technologies, food matrices and altered lipid oxidation levels affect their bioavailability. Moreover, which functional foods are optimal LC n-3 FA carriers is unknown. The aim of the study was to determine the bioavailability of LC n-3 FA and the postprandial TAG response after the intake of oxidised or non-oxidised cod liver oil and after the intake of emulsified or non-emulsified LC n-3 FA using novel functional food items as LC n-3 FA carriers in a randomised cross-over acute study. A total of twenty-four healthy subjects completed the study in which subjects consumed one of four different test meals containing 1·5 g LC n-3 FA, or a control meal with no LC n-3 FA. Postprandial TAG-rich lipoproteins were isolated and their fatty acid composition was measured. The LC n-3 FA from emulsified foods were more rapidly incorporated into TAG-rich lipoproteins compared with non-emulsified foods. The incorporation of LC n-3 FA was similar for oils emulsified in yogurt or juice and was unaffected by the oxidative status of the oil. Postprandial TAG levels did not differ among the various test meals. In conclusion, emulsification increases the bioavailability of LC n-3 FA through a more rapid incorporation into TAG-rich lipoproteins, and juice and yogurt are equally suited as LC n-3 FA carriers. The acute intake of oxidised cod liver oil does not influence the incorporation of LC n-3 FA into TAG-rich lipoproteins.
RESUMO
SCOPE: A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also associated with altered PUFA profiles. METHODS AND RESULTS: We used mathematical modeling to predict levels of PUFA in whole blood, based on multiple hypothesis testing and bootstrapped LASSO selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in FADS1 from 1607 participants (Food4Me Study). The models were developed using data from the first reported time point (training set) and their predictive power was evaluated using data from the last reported time point (test set). Among other food items, fish, pizza, chicken, and cereals were identified as being associated with the PUFA profiles. Using these food items and the rs174546 genotypes as predictors, models explained 26-43% of the variability in PUFA concentrations in the training set and 22-33% in the test set. CONCLUSION: Selecting food items using multiple hypothesis testing is a valuable contribution to determine predictors, as our models' predictive power is higher compared to analogue studies. As unique feature, we additionally confirmed our models' power based on a test set.
Assuntos
Ingestão de Alimentos/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/sangue , Polimorfismo de Nucleotídeo Único , Dessaturase de Ácido Graxo Delta-5 , Dieta , Ácidos Graxos/genética , Feminino , Humanos , Masculino , Modelos BiológicosRESUMO
BACKGROUND & AIMS: Omega-3 rich fatty acids (n-3FA) have powerful anti-inflammatory and anti-neoplastic properties. Previous studies have investigated plasma and cellular uptake of oral and parenteral n-3FA regimens. These have shown that n-3FA undergo rapid uptake into cells which is sustained for the length of the treatment course. The aim of this study was to investigate long-term uptake of prolonged, regular treatment courses of parenteral n-3FA which has not been previously reported. METHODS: As part of a phase II single-arm trial, patients with advanced pancreatic cancer were treated with gemcitabine plus parenteral n-3FA rich lipid emulsion (up to 100 g) each week for three consecutive weeks with a subsequent rest week. This was repeated for up to six months in total for each patient. Pre-treatment serum and erythrocyte cell membrane (ECM) pellet samples were obtained each week for the entire treatment course of each patient. Post-treatment samples were obtained for the first two cycles only to assess rapid uptake. Fatty acid methyl esters (FAME) were produced and analysed using gas chromatography. FAME proportions as a total of sample lipid composition for each class were plotted and the results analysed using a linear regression coefficient model. RESULTS: There was rapid and significant uptake of EPA and DHA FAME into plasma Non-Esterified Fatty Acids (NEFA) and EPA into ECM pellets in post-treatment samples (median increase of 1.06%, 0.65% and 0.05% respectively). There was significant reduction in n-6 fatty acid FAMEs and DHA in ECM pellets (decrease of 0.31% and 0.8% respectively- p = 0.031 for all). There was significant sustained uptake of EPA and DHA FAME into ECM pellets over the cohort's pooled treatment course with corresponding reduction in the n-6:n-3 ratio. CONCLUSIONS: Prolonged regular parenteral n-3FA administration results in rapid and sustained cellular uptake. This regimen is appropriate for therapies aimed at increasing n-3FA content of cellular membranes and reduction of the n-6:n-3 ratio.