Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125896

RESUMO

Current understanding of the structure and functioning of biomembranes is impossible without determining the mechanism of formation of membrane lipid rafts. The formation of liquid-ordered and disordered phases (Lo and Ld) and lipid rafts in membranes and their simplified models is discussed. A new consideration of the processes of formation of lipid phases Lo and Ld and lipid rafts is proposed, taking into account the division of each of the glycerophospholipids into several groups. Generally accepted three-component schemes for modeling the membrane structure are critically considered. A four-component scheme is proposed, which is designed to more accurately assume the composition of lipids in the resulting Lo and Ld phases. The role of the polar head groups of phospholipids and, in particular, phosphatidylethanolamine is considered. The structure of membrane rafts and the possible absence of a clear boundary between the Lo and Ld phases are discussed.


Assuntos
Microdomínios da Membrana , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/química , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Animais , Humanos
2.
Proc Natl Acad Sci U S A ; 121(25): e2312415121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875149

RESUMO

Plants rely on immune receptor complexes at the cell surface to perceive microbial molecules and transduce these signals into the cell to regulate immunity. Various immune receptors and associated proteins are often dynamically distributed in specific nanodomains on the plasma membrane (PM). However, the exact molecular mechanism and functional relevance of this nanodomain targeting in plant immunity regulation remain largely unknown. By utilizing high spatiotemporal resolution imaging and single-particle tracking analysis, we show that myosin XIK interacts with remorin to recruit and stabilize PM-associated kinase BOTRYTIS-INDUCED KINASE 1 (BIK1) within immune receptor FLAGELLIN SENSING 2 (FLS2)-containing nanodomains. This recruitment facilitates FLS2/BIK1 complex formation, leading to the full activation of BIK1-dependent defense responses upon ligand perception. Collectively, our findings provide compelling evidence that myosin XI functions as a molecular scaffold to enable a spatially confined complex assembly within nanodomains. This ensures the presence of a sufficient quantity of preformed immune receptor complex for efficient signaling transduction from the cell surface.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Imunidade Inata , Miosinas , Imunidade Vegetal , Proteínas Serina-Treonina Quinases , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Miosinas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
3.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38777601

RESUMO

MAGUK scaffold proteins play a central role in maintaining and modulating synaptic signaling, providing a framework to retain and position receptors, signaling molecules, and other synaptic components. In particular, the MAGUKs SAP102 and PSD-95 are essential for synaptic function at distinct developmental timepoints and perform both overlapping and unique roles. While their similar structures allow for common binding partners, SAP102 is expressed earlier in synapse development and is required for synaptogenesis, whereas PSD-95 expression peaks later and is associated with synapse maturation. PSD-95 and other key synaptic proteins organize into subsynaptic nanodomains that have a significant impact on synaptic transmission, but the nanoscale organization of SAP102 is unknown. How SAP102 is organized within the synapse, and how it relates spatially to PSD-95 on a nanometer scale, could underlie its unique functions and impact how SAP102 scaffolds synaptic proteins. Here we used DNA-PAINT super-resolution microscopy to measure SAP102 nano-organization and its spatial relationship to PSD-95 at individual synapses in mixed-sex rat cultured neurons. We found that like PSD-95, SAP102 accumulates in high-density subsynaptic nanoclusters (NCs). However, SAP102 NCs were smaller and denser than PSD-95 NCs across development. Additionally, only a subset of SAP102 NCs co-organized with PSD-95, revealing MAGUK nanodomains within individual synapses containing either one or both proteins. These MAGUK nanodomain types had distinct NC properties and were differentially enriched with the presynaptic release protein Munc13-1. This organization into both shared and distinct subsynaptic nanodomains may underlie the ability of SAP102 and PSD-95 to perform both common and unique synaptic functions.


Assuntos
Proteína 4 Homóloga a Disks-Large , Sinapses , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses/metabolismo , Ratos , Feminino , Proteínas de Membrana/metabolismo , Ratos Sprague-Dawley , Domínios Proteicos , Masculino , Neurônios/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/citologia , Neuropeptídeos
4.
ACS Nano ; 18(11): 8157-8167, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456777

RESUMO

Perovskite light-emitting diodes (PeLEDs) are the next promising display technologies because of their high color purity and wide color gamut, while two classical emitter forms, i.e., polycrystalline domains and quantum dots, are encountering bottlenecks. Weak carrier confinement of large polycrystalline domains leads to inadequate radiative recombination, and surface ligands on quantum dots are the main annihilation sites for injected carriers. Here, pinpointing these issues, we screened out an amphoteric agent, namely, 2-(2-aminobenzoyl)benzoic acid (2-BA), to precisely control the in situ growth of FAPbI3 (FA: formamidine) nanodomains with enhanced space confinement, preferred crystal orientation, and passivated trap states on the transport-layer substrate. The amphoteric 2-BA performs bidentate chelating functions on the formation of ultrasmall perovskite colloids (<1 nm) in the precursor, resulting in a smoother FAPbI3 emitting layer. Based on monodispersed and homogeneous nanodomain films, a near-infrared PeLED device with a champion efficiency of >22% plus enhanced T80 operational stability was achieved. The proposed perovskite nanodomain film tends to be a mainstream emitter toward the performance breakthrough of PeLED devices covering visible wavelengths beyond infrared.

5.
ACS Appl Mater Interfaces ; 16(6): 7444-7452, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38302429

RESUMO

Potassium sodium niobate (KNN) lead-free piezoceramics have garnered significant attention for their environmentally friendly attributes, desired piezoelectric activity (d33), and high Curie temperature (Tc). However, the limited applicability of most KNN systems in high-power apparatus, including ultrasonic motors, transformers, and resonators, persists due to the inherent low mechanical quality factor (Qm). Herein, we proposed an innovative strategy for achieving high Qm accompanied by desirable d33 via synergistic chemical doping and texturing in KNN piezoceramics. Comprehensive electrical measurements along with quantitative structural characterization at multilength scales reveal that the excellent electromechanical properties (kp = 0.58, d33 ∼ 134 pC·N-1, Qm = 582, and Tc ∼ 415 °C) originate from the high <001> texturing degree, nanodomain, as well as acceptor hardening. Our findings provide an insight and guidance for achieving high-power performance in lead-free KNN-based piezoceramics, which were expected to be used in advanced transducer technology.

6.
Nano Lett ; 24(4): 1303-1308, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232135

RESUMO

A nonlinear holographic technique is capable of processing optical information in the newly generated optical frequencies, enabling fascinating functions in laser display, security storage, and image recognition. One popular nonlinear hologram is based on a periodically poled lithium niobate (LN) crystal. However, due to the limitations of traditional fabrication techniques, the pixel size of the LN hologram is typically several micrometers, resulting in a limited field-of-voew (FOV) of several degrees. Here, we experimentally demonstrate an ultra-high-resolution LN hologram by using the laser poling technique. The minimal pixel size reaches 200 nm, and the FOV is extended above 120° in our experiments. The image distortions at large view angles are effectively suppressed through the Fourier transform. The FOV is further improved by combining multiple diffraction orders of SH fields. The ultimate FOV under our configuration is decided by a Fresnel transmission. Our results pave the way for expanding the applications of nonlinear holography to wide-view imaging and display.

7.
Heliyon ; 9(11): e21924, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045203

RESUMO

While the Fluid Mosaic model (FMM) is widely accepted as an account of the cell membrane's structure-function, its inability to explain certain phenomena has led to the lipid rafts hypothesis (nanodomains) that spontaneous spatiotemporal enriched zones of sphingolipids-cholesterol-protein exist within the membrane. In this text, we propose a novel approach that conceives the cell membrane as a living entity. The questions regarding the FMM revolve around the fact that, although these molecular components are present in many cell types, the membrane does not react in the same way to every external agent; for example, a virus evokes a particular response: why is there some marked specificity of virus (or toxin) attack on one (or some) of these cell types and not to other cell types that nevertheless have a similar membrane protein constitution? The crucial question, to explain this selectivity, would be what determines the specificity of attack on some cells and not others? While FMN assumes a dynamism between macrostates at the intramolecular, intermolecular, and/or collective levels in the membrane, the approach of the lipid raft model presupposes a much greater and more complex dynamics of microstates (even nano-states) of these molecular components. In other words, it implies higher and instantaneous mobility as assemblages ("intentional") and thus, of the membrane itself (as a collective), in response to changes in the internal and external physicochemical environment over a broad spatiotemporal scale. This suggests a mechanism of membrane adaptation in the face of evolutionary constraints. In this text, we propose a paradigmatic approach, from Deleuze-Guattari's philosophy: to conceive the cell membrane as living and not as a mere molecular conglomerate with particular functions and mechanical processes between molecules. For this, we employ the functional concepts of territory and machinic assemblage, whence the vitality of the membrane would allow us to postulate instantaneous updates, within wider spatiotemporal scales in its composition in contrast with the model that dominates as a more plausible explanation nowadays, that does not include smaller spatiotemporal events. If we resort to the concept of territory and its different media components, we could offer a more plausible explanation of the vigorous dynamism in the composition of the cell membrane since it would allow more subtle and complex differentiations between media and thus make visible the constant and instant changes. We propose that the model of nanodomains, understood as a process of dynamic territorialization, offers a more complex and subtle explanation of the instantaneous changes in the cell membrane's composition. This approach expands the explanatory framework for cellular phenomena and reveals their spatiotemporal complexity in accordance with other research.

8.
ACS Appl Mater Interfaces ; 15(48): 55984-55990, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37993976

RESUMO

The characteristic of self-recovery holds significant implications for upholding performance stability within flexible electronic devices following the release of mechanical deformation. Herein, the dynamics of self-recovery in a buckling inorganic membrane is studied via in situ scanning probe microscopy technology. The experimental results demonstrate that the ultimate deformation ratio of the buckling BaTiO3 ferroelectric membrane is up to 88%, which is much higher than that of the buckling SrTiO3 dielectric membrane (49%). Combined with piezoresponse force microscopy and phase-field simulations, we find that ferroelectric domain transformation accompanies the whole process of buckling and self-recovery of the ferroelectric membrane, i.e., the presence of the nano-c domain not only releases part of the elastic energy of the membrane but also reduces the interface mismatch of the a/c domain, which encourages the buckling ferroelectric membrane to have excellent self-recovery properties. It is conceivable that the evolution of ferroelectric domains will play a greater role in the regulation of the mechanical properties of ferroelectric membranes and flexible devices.

9.
Nano Lett ; 23(21): 10089-10096, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37890167

RESUMO

An in-depth understanding of the structure-property relationships in semiconductor mixed-halide perovskites is critical for their potential applications in various light-absorbing and light-emitting optoelectronic devices. Here we show that during the crystal growth of mixed-halide CsPbBr1.2I1.8 nanocrystals (NCs), abundant Ruddlesden-Popper (RP) plane stacking faults are formed to release the lattice strain. These RP planes hinder the exchange of halide species across them, resulting in the presence of multiple nanodomains with discrete mixed-halide compositions inside a single CsPbBr1.2I1.8 NC. Photoluminescence peaks from these pre-segregated nanodomains, whose correlated intensity and wavelength variations signify the interactions of coupled quantum dots within a single CsPbBr1.2I1.8 NC, can be simultaneously resolved at cryogenic temperature. Our findings thus point to a fascinating scenario in which a semiconductor nanostructure can be further divided into multiple quantum-light sources, the interaction and manipulation of which will promote novel photophysics to facilitate their potential applications in quantum information technologies.

10.
Front Mol Neurosci ; 16: 1281653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727512

RESUMO

[This corrects the article DOI: 10.3389/fnmol.2023.1232795.].

11.
Front Mol Neurosci ; 16: 1232795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602191

RESUMO

Postsynaptic neurotransmitter receptors and their associated scaffolding proteins assemble into discrete, nanometer-scale subsynaptic domains (SSDs) within the postsynaptic membrane at both excitatory and inhibitory synapses. Intriguingly, postsynaptic receptor SSDs are mirrored by closely apposed presynaptic active zones. These trans-synaptic molecular assemblies are thought to be important for efficient neurotransmission because they concentrate postsynaptic receptors near sites of presynaptic neurotransmitter release. While previous studies have characterized the role of synaptic activity in sculpting the number, size, and distribution of postsynaptic SSDs at established synapses, it remains unknown whether neurotransmitter signaling is required for their initial assembly during synapse development. Here, we evaluated synaptic nano-architecture under conditions where presynaptic neurotransmitter release was blocked prior to, and throughout synaptogenesis with tetanus neurotoxin (TeNT). In agreement with previous work, neurotransmitter release was not required for the formation of excitatory or inhibitory synapses. The overall size of the postsynaptic specialization at both excitatory and inhibitory synapses was reduced at chronically silenced synapses. However, both AMPARs and GABAARs still coalesced into SSDs, along with their respective scaffold proteins. Presynaptic active zone assemblies, defined by RIM1, were smaller and more numerous at silenced synapses, but maintained alignment with postsynaptic AMPAR SSDs. Thus, basic features of synaptic nano-architecture, including assembly of receptors and scaffolds into trans-synaptically aligned structures, are intrinsic properties that can be further regulated by subsequent activity-dependent mechanisms.

12.
Neuropathol Appl Neurobiol ; 49(4): e12924, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461203

RESUMO

AIMS: Synaptic strength depends strongly on the subsynaptic organisation of presynaptic transmitter release and postsynaptic receptor densities, and their alterations are expected to underlie pathologies. Although synaptic dysfunctions are common pathogenic traits of Alzheimer's disease (AD), it remains unknown whether synaptic protein nano-organisation is altered in AD. Here, we systematically characterised the alterations in the subsynaptic organisation in cellular and mouse models of AD. METHODS: We used immunostaining and super-resolution stochastic optical reconstruction microscopy imaging to quantitatively examine the synaptic protein nano-organisation in both Aß1-42-treated neuronal cultures and cortical sections from a mouse model of AD, APP23 mice. RESULTS: We found that Aß1-42-treatment of cultured hippocampal neurons decreased the synaptic retention of postsynaptic scaffolds and receptors and disrupted their nanoscale alignment to presynaptic transmitter release sites. In cortical sections, we found that while GluA1 receptors in wild-type mice were organised in subsynaptic nanoclusters with high local densities, receptors in APP23 mice distributed more homogeneously within synapses. This reorganisation, together with the reduced overall receptor density, led to reduced glutamatergic synaptic transmission. Meanwhile, the transsynaptic alignment between presynaptic release-guiding RIM1/2 and postsynaptic scaffolding protein PSD-95 was reduced in APP23 mice. Importantly, these reorganisations were progressive with age and were more pronounced in synapses in close vicinity of Aß plaques with dense cores. CONCLUSIONS: Our study revealed a spatiotemporal-specific reorganisation of synaptic nanostructures in AD and identifies dense-core amyloid plaques as the major local inductor in APP23 mice.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Sinapses/patologia , Neurônios/patologia , Transmissão Sináptica/fisiologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
13.
Elife ; 122023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37404129

RESUMO

A synergistic combination of in vitro electrophysiology and multicompartmental modeling of rat CA1 pyramidal neurons identified TRPM4 channels as major drivers of cholinergic modulation of the firing rate during a triangular current ramp, which emulates the bump in synaptic input received while traversing the place field. In control, fewer spikes at lower frequencies are elicited on the down-ramp compared to the up-ramp due to long-term inactivation of the NaV channel. The cholinergic agonist carbachol (CCh) removes or even reverses this spike rate adaptation, causing more spikes to be elicited on the down-ramp than the up-ramp. CCh application during Schaffer collateral stimulation designed to simulate a ramp produces similar shifts in the center of mass of firing to later in the ramp. The non-specific TRP antagonist flufenamic acid and the TRPM4-specific blockers CBA and 9-phenanthrol, but not the TRPC-specific antagonist SKF96365, reverse the effect of CCh; this implicates the Ca2+-activated nonspecific cation current, ICAN, carried by TRPM4 channels. The cholinergic shift of the center of mass of firing is prevented by strong intracellular Ca2+ buffering but not by antagonists for IP3 and ryanodine receptors, ruling out a role for known mechanisms of release from intracellular Ca2+ stores. Pharmacology combined with modeling suggest that [Ca2+] in a nanodomain near the TRPM4 channel is elevated through an unknown source that requires both muscarinic receptor activation and depolarization-induced Ca2+ influx during the ramp. Activation of the regenerative inward TRPM4 current in the model qualitatively replicates and provides putative underlying mechanisms for the experimental observations.


Assuntos
Células Piramidais , Canais de Cátion TRPM , Ratos , Animais , Células Piramidais/fisiologia , Colinérgicos , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Receptores Muscarínicos/metabolismo
14.
J Neurosci ; 43(33): 5883-5892, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37369583

RESUMO

The chemical synapse is a complex machine separated into three parts: presynaptic, postsynaptic, and cleft. Super-resolution light microscopy has revealed alignment of presynaptic vesicle release machinery and postsynaptic neurotransmitter-receptors and scaffolding components in synapse spanning nanocolumns. Cryo-electron tomography confirmed that postsynaptic glutamate receptor-like structures align with presynaptic structures in proximity to synaptic vesicles into transsynaptic assemblies. In our electron tomographic renderings, nearly all transcleft structures visibly connect to intracellular structures through transmembrane structures to form transsynaptic assemblies, potentially providing a structural basis for transsynaptic alignment. Here, we describe the patterns of composition, distribution, and interactions of all assemblies spanning the synapse by producing three-dimensional renderings of all visibly connected structures in excitatory and inhibitory synapses in dissociated rat hippocampal neuronal cultures of both sexes prepared by high-pressure freezing and freeze-substitution. The majority of transcleft structures connect to material in both presynaptic and postsynaptic compartments. We found several instances of assemblies connecting to both synaptic vesicles and postsynaptic density scaffolding. Each excitatory synaptic vesicle within 30 nm of the active zone contacts one or more assembly. Further, intracellular structures were often shared between assemblies, entangling them to form larger complexes or association domains, often in small clusters of vesicles. Our findings suggest that transsynaptic assemblies physically connect the three compartments, allow for coordinated molecular organization, and may combine to form specialized functional association domains, resembling the light-level nanocolumns.SIGNIFICANCE STATEMENT A recent tomographic study uncovered that receptor-like cleft structures align across the synapse. These aligned structures were designated as transsynaptic assemblies and demonstrate the coordinated organization of synaptic transmission molecules between compartments. Our present tomographic study expands on the definition of transsynaptic assemblies by analyzing the three-dimensional distribution and connectivity of all cleft-spanning structures and their connected intracellular structures. While one-to-one component alignment occurs across the synapse, we find that many assemblies share components, leading to a complex entanglement of assemblies, typically around clusters of synaptic vesicles. Transsynaptic assemblies appear to form domains which may be the structural basis for alignment of molecular nanodomains into synapse spanning nanocolumns described by super-resolution light microscopy.


Assuntos
Sinapses , Transmissão Sináptica , Masculino , Feminino , Animais , Ratos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Neurônios/fisiologia , Vesículas Sinápticas/fisiologia , Receptores de Glutamato
15.
Front Synaptic Neurosci ; 15: 1123564, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091879

RESUMO

Postsynaptic densities (PSDs) are large protein complexes associated with the postsynaptic membrane of excitatory synapses important for synaptic function including plasticity. Conventional electron microscopy (EM) typically depicts PSDs as compact disk-like structures of hundreds of nanometers in size. Biochemically isolated PSDs were also similar in dimension revealing a predominance of proteins with the ability to polymerize into an extensive scaffold; several EM studies noted their irregular contours with often small granular structures (<30 nm) and holes. Super-resolution light microscopy studies observed clusters of PSD elements and their activity-induced lateral movement. Furthermore, our recent EM study on PSD fractions after sonication observed PSD fragments (40-90 nm in size) separate from intact PSDs; however, such structures within PSDs remained unidentified. Here we examined isolated PSDs by cryo-EM tomography with our new approach of automatic segmentation that enables delineation of substructures and their quantitative analysis. The delineated substructures broadly varied in size, falling behind 30 nm or exceeding 100 nm and showed that a considerable portion of the substructures (>38%) in isolated PSDs was in the same size range as those fragments. Furthermore, substructures spanning the entire thickness of the PSD were found, large enough to contain both membrane-associated and cytoplasmic proteins of the PSD; interestingly, they were similar to nanodomains in frequency. The structures detected here appear to constitute the isolated PSD as modules of various compositions, and this modular nature may facilitate remodeling of the PSD for proper synaptic function and plasticity.

16.
Curr Biol ; 33(8): 1588-1596.e6, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36924767

RESUMO

Plant receptor kinases are key transducers of extracellular stimuli, such as the presence of beneficial or pathogenic microbes or secreted signaling molecules. Receptor kinases are regulated by numerous post-translational modifications.1,2,3 Here, using the immune receptor kinases FLS24 and EFR,5 we show that S-acylation at a cysteine conserved in all plant receptor kinases is crucial for function. S-acylation involves the addition of long-chain fatty acids to cysteine residues within proteins, altering their biochemical properties and behavior within the membrane environment.6 We observe S-acylation of FLS2 at C-terminal kinase domain cysteine residues within minutes following the perception of its ligand, flg22, in a BAK1 co-receptor and PUB12/13 ubiquitin ligase-dependent manner. We demonstrate that S-acylation is essential for FLS2-mediated immune signaling and resistance to bacterial infection. Similarly, mutating the corresponding conserved cysteine residue in EFR suppressed elf18-triggered signaling. Analysis of unstimulated and activated FLS2-containing complexes using microscopy, detergents, and native membrane DIBMA nanodiscs indicates that S-acylation stabilizes, and promotes retention of, activated receptor kinase complexes at the plasma membrane to increase signaling efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ligantes , Cisteína/metabolismo , Plantas/metabolismo , Membrana Celular/metabolismo , Acilação , Imunidade Vegetal
17.
ACS Infect Dis ; 9(4): 773-784, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36946615

RESUMO

The host restriction factor, Serinc5, incorporates into budding HIV particles and inhibits their infection by an incompletely understood mechanism. We have previously reported that Serinc5 but not its paralogue, Serinc2, blocks HIV cell entry by membrane fusion, specifically by inhibiting fusion pore formation and dilation. A body of work suggests that Serinc5 may alter the conformation and clustering of the HIV fusion protein, Env. To contribute an additional perspective to the developing model of Serinc5 restriction, we assessed Serinc2 and Serinc5's effects on HIV pseudoviral membranes. By measuring pseudoviral membrane thickness via cryo-electron microscopy and order via the fluorescent dye, FLIPPER-TR, Serinc5 was found to increase membrane heterogeneity, skewing the distribution toward a larger fraction of the viral membrane in an ordered phase. We also directly observed for the first time the coexistence of membrane domains within individual viral membrane envelopes. Using a total internal reflection fluorescence-based single particle fusion assay, we found that treatment of HIV pseudoviral particles with phosphatidylethanolamine (PE) rescued HIV pseudovirus fusion from restriction by Serinc5, which was accompanied by decreased membrane heterogeneity and order. This effect was specific for PE and did not depend on acyl chain length or saturation. Together, these data suggest that Serinc5 alters multiple interrelated properties of the viral membrane─lipid chain order, rigidity, line tension, and lateral pressure─which decrease the accessibility of fusion intermediates and disfavor completion of fusion. These biophysical insights into Serinc5 restriction of HIV infectivity could contribute to the development of novel antivirals that exploit the same weaknesses.


Assuntos
Infecções por HIV , Proteínas de Membrana , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Crioeletrônica , Fusão de Membrana , Lipídeos
18.
J Exp Bot ; 74(8): 2479-2488, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36738265

RESUMO

Biological membranes are highly dynamic, in particular due to the constant exchange of vesicles between the different compartments of the cell. In addition, the dynamic nature of membranes is also caused by their inherently fluid properties, with the diffusion of both proteins and lipids within their leaflets. Lipid diffusion is particularly difficult to study in vivo but recent advances in optical microscopy and lipid visualization now enable the characterization of lipid lateral motion, and here we review these methods in plants. We then discuss the parameters that affect lipid diffusion in membranes and explore their consequences on the formation of membrane domains at different scales. Finally, we consider how controlled lipid diffusion affects membrane functions during cell signaling, development, and environmental interactions.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Difusão
19.
Small ; 19(19): e2207464, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36748859

RESUMO

Eco-friendly transparent dielectric ceramics with superior energy storage properties are highly desirable in various transparent energy-storage electronic devices, ranging from advanced transparent pulse capacitors to electro-optical multifunctional devices. However, the collaborative improvement of energy storage properties and optical transparency in KNN-based ceramics still remains challenging. To address this issue, multiple synergistic strategies are proposed, such as refining the grain size, introducing polar nanoregions, and inducing a high-symmetry phase structure. Accordingly, outstanding energy storage density (Wtotal  ≈7.5 J cm-3 , Wrec  ≈5.3 J cm-3 ) and optical transmittance (≈76% at 1600 nm, ≈62% at 780 nm) are simultaneously realized in the 0.94(K0.5 Na0.5 )NbO3 -0.06Sr0.7 La0.2 ZrO3 ceramic, together with satisfactory charge-discharge performances (discharge energy density: ≈2.7 J cm-3 , power density: ≈243 MW cm-3 , discharge rate: ≈76 ns), surpassing previously reported KNN-based transparent ceramics. Piezoresponse force microscopy and transmission electron microscopy revealed that this excellent performance can be attributed to the nanoscale domain and submicron-scale grain size. The significant improvement in the optical transparency and energy storage properties of the materials resulted in the widening of the application prospects of the materials.

20.
Biosci Rep ; 43(2)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36749130

RESUMO

Cyclic adenosine monophosphate (cAMP) is a diffusible intracellular second messenger that plays a key role in the regulation of cardiac function. In response to the release of catecholamines from sympathetic terminals, cAMP modulates heart rate and the strength of contraction and ease of relaxation of each heartbeat. At the same time, cAMP is involved in the response to a multitude of other hormones and neurotransmitters. A sophisticated network of regulatory mechanisms controls the temporal and spatial propagation of cAMP, resulting in the generation of signaling nanodomains that enable the second messenger to match each extracellular stimulus with the appropriate cellular response. Multiple proteins contribute to this spatiotemporal regulation, including the cAMP-hydrolyzing phosphodiesterases (PDEs). By breaking down cAMP to a different extent at different locations, these enzymes generate subcellular cAMP gradients. As a result, only a subset of the downstream effectors is activated and a specific response is executed. Dysregulation of cAMP compartmentalization has been observed in cardiovascular diseases, highlighting the importance of appropriate control of local cAMP signaling. Current research is unveiling the molecular organization underpinning cAMP compartmentalization, providing original insight into the physiology of cardiac myocytes and the alteration associated with disease, with the potential to uncover novel therapeutic targets. Here, we present an overview of the mechanisms that are currently understood to be involved in generating cAMP nanodomains and we highlight the questions that remain to be answered.


Assuntos
AMP Cíclico , Sistemas do Segundo Mensageiro , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA