Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
1.
Biochem Biophys Res Commun ; 734: 150776, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39368367

RESUMO

The regulation of intracellular reactive oxygen species (ROS) levels is important for maintaining the self-renewal ability of neural stem/progenitor cells (NSCs). In this study, we demonstrate that 53BP1, a DNA damage response factor known to facilitate the repair of DNA double-strand breaks, supports the maintenance of NSC stemness. ReNcell VM human NSCs with depleted 53BP1 exhibited reduced self-renewal ability compared with control NSCs, as revealed by a decrease in neurosphere size and an increase in differentiation into neural or glial cells within an NSC culture. Furthermore, 53BP1 depletion elevated cellular ROS levels, accompanied by mitochondrial abnormalities. The reduced self-renewal ability and elevated ROS levels in 53BP1-deficient NSCs were restored with the treatment of a radical scavenger, N-acetyl-l-cysteine. In addition, we investigated the functional relationship in the NSC self-renewal ability between 53BP1 and ataxia-telangiectasia mutated (ATM) or forkhead box O3a (FOXO3a), factors required for mitochondrial homeostasis, and the maintenance of NSC stemness. We found that ATM inhibition or FOXO3a deficiency, in addition to 53BP1 deficiency, did not induce further NSC stemness impairment. Collectively, our findings show that 53BP1, by cooperatively functioning with ATM and FOXO3a, supports the maintenance of NSC stemness by modulating mitochondrial homeostasis.

2.
Curr Protoc ; 4(10): e70023, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39373184

RESUMO

The liver's role in the biotransformation of chemicals is critical for both augmented toxicity and detoxification. However, there has been a significant lack of effort to integrate biotransformation into in vitro neurotoxicity testing. Traditional in vitro neurotoxicity testing systems are unable to assess the qualitative and quantitative differences between parent chemicals and their metabolites as they would occur in the human body. As a result, traditional in vitro toxicity screening systems cannot incorporate hepatic biotransformation to predict the neurotoxic potential of chemical metabolites. To bridge this gap, a high-throughput, metabolism-mediated neurotoxicity testing system has been developed, which combines metabolically competent HepaRG cell spheroids with a three-dimensional (3D) culture of ReNcell VM human neural progenitor cell line. The article outlines protocols for generating HepaRG cell spheroids using an ultralow attachment (ULA) 384-well plate and for cultivating ReNcell VM in 3D on a 384-pillar plate with sidewalls and slits (384PillarPlate). Metabolically sensitive test compounds are introduced into the ULA 384-well plate containing HepaRG spheroids and then tested with 3D-cultured ReNcell VM on the 384PillarPlate. This configuration permits the in situ generation of metabolites by HepaRG cells and their subsequent testing on neurospheres. By analyzing cell viability data, researchers can determine the IC50 values for each compound, thus evaluating metabolism-mediated neurotoxicity. © 2024 Wiley Periodicals LLC. Basic Protocol 1: HepaRG spheroid culture in an ultralow attachment (ULA) 384-well plate and the assessment of drug-metabolizing enzyme (DME) activities Basic Protocol 2: 3D neural stem cell (NSC) culture on a 384PillarPlate and compound treatment for the assessment of metabolism-mediated neurotoxicity Basic Protocol 3: Image acquisition, processing, and data analysis.


Assuntos
Técnicas de Cocultura , Ensaios de Triagem em Larga Escala , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Técnicas de Cocultura/métodos , Ensaios de Triagem em Larga Escala/métodos , Testes de Toxicidade/métodos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Fígado/metabolismo , Fígado/citologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/citologia , Linhagem Celular
3.
Stem Cell Res Ther ; 15(1): 356, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385216

RESUMO

BACKGROUND: Parkinson´s disease (PD), the second most common neurodegenerative disease in the world, is characterized by the death or impairment of dopaminergic neurons (DAn) in the substantia nigra pars compacta and dopamine depletion in the striatum. Currently, there is no cure for PD, and treatments only help to reduce the symptoms of the disease, and do not repair or replace the DAn damaged or lost in PD. Cell replacement therapy (CRT) seeks to relieve both pathological and symptomatic PD manifestations and has been shown to have beneficial effects in experimental PD models as well as in PD patients, but an apt cell line to be used in the treatment of PD has yet to be established. The purpose of this study was to examine the effects of the transplantation of hVM1 clone 32 cells, a bankable line of human neural stem cells (hNSCs), in a PD mouse model at four months post-transplant. METHODS: Adult (five month-old) C57BL/6JRccHsd male mice were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and subsequently transplanted with hVM1 clone 32 cells, or buffer, in the left striatum. Four months post-transplant, behavioral effects were explored using the open field and paw print tests, and histological analyses were performed. RESULTS: Transplantation of hVM1 clone 32 cells rescued dopaminergic nigrostriatal populations in adult Parkinsonian mice. Motor and neurological deterioration were observed in buffer-treated mice, the latter of which had a tendency to improve in hNSC-transplanted mice. Detection of mast cell migration to the superficial cervical lymph nodes in cell-transplanted mice denoted a peripheral effect. Transplantation of hNSCs also rescued neuroblast neurogenesis in the subgranular zone, which was correlated with dopaminergic recovery and is indicative of local recovery mechanisms. CONCLUSIONS: In this proof-of-concept study, the transplantation of hVM1 clone 32 cells provided neuroprotection in adult Parkinsonian mice by restoring the dopaminergic nigrostriatal pathway and hippocampal neurogenesis, demonstrating the efficacy of cell replacement therapy as a treatment for PD.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais , Doença de Parkinson , Animais , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Camundongos , Masculino , Doença de Parkinson/terapia , Neurônios Dopaminérgicos/metabolismo , Humanos , Substância Negra , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina
4.
J Neurochem ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374171

RESUMO

Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.

5.
Stem Cell Rev Rep ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259446

RESUMO

The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain's homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.

6.
Adv Funct Mater ; 34(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39308638

RESUMO

Real-time and non-invasive monitoring of neuronal differentiation will help increase our understanding of neuronal development and help develop regenerative stem cell therapies for neurodegenerative diseases. Traditionally, reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence (IF) staining have been widely used to investigate stem cell differentiation; however, their limitations include endpoint analysis, invasive nature of monitoring, and lack of single-cell-level resolution. Several limitations hamper current approaches to studying neural stem cell (NSC) differentiation. In particular, fixation and staining procedures can introduce artificial changes in cellular morphology, hindering our ability to accurately monitor the progression of the process and fully understand its functional aspects, particularly those related to cellular connectivity and neural network formation. Herein, we report a novel approach to monitor neuronal differentiation of NSCs non-invasively in real-time using cell-based biosensors (CBBs). Our research efforts focused on utilizing intein-mediated protein engineering to design and construct a highly sensitive biosensor capable of detecting a biomarker of neuronal differentiation, hippocalcin. Hippocalcin is a critical protein involved in neurogenesis, and the CBB functions by translocating a fluorescence signal to report the presence of hippocalcin externally. To construct the hippocalcin sensor proteins, hippocalcin bioreceptors, AP2 and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2), were fused to each split-intein carrying split-nuclear localization signal (NLS) peptides, respectively, and a fluorescent protein was introduced as a reporter. Protein splicing (PS) was triggered in the presence of hippocalcin to generate functional signal peptides, which promptly translocated the fluorescence signal to the nucleus. The stem cell-based biosensor showed fluorescence signal translocation only upon neuronal differentiation. Undifferentiated stem cells or cells that had differentiated into astrocytes or oligodendrocytes did not show fluorescence signal translocation. The number of differentiated neurons was consistent with that measured by conventional IF staining. Furthermore, this approach allowed for the monitoring of neuronal differentiation at an earlier stage than that detected using conventional approaches, and the translocation of fluorescence signal was monitored before the noticeable expression of class III ß-tubulin (TuJ1), an early neuronal differentiation marker. We believe that these novel CBBs offer an alternative to current techniques by capturing the dynamics of differentiation progress at the single-cell level and by providing a tool to evaluate how NSCs efficiently differentiate into specific cell types, particularly neurons.

7.
Front Toxicol ; 6: 1402630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238878

RESUMO

Neurotoxicants are substances that can lead to adverse structural or functional effects on the nervous system. These can be chemical, biological, or physical agents that can cross the blood brain barrier to damage neurons or interfere with complex interactions between the nervous system and other organs. With concerns regarding social policy, public health, and medicine, there is a need to ensure rigorous testing for neurotoxicity. While the most common neurotoxicity tests involve using animal models, a shift towards stem cell-based platforms can potentially provide a more biologically accurate alternative in both clinical and pharmaceutical research. With this in mind, the objective of this article is to review both current technologies and recent advancements in evaluating neurotoxicants using stem cell-based approaches, with an emphasis on developmental neurotoxicants (DNTs) as these have the most potential to lead to irreversible critical damage on brain function. In the next section, attempts to develop novel predictive model approaches for the study of both neural cell fate and developmental neurotoxicity are discussed. Finally, this article concludes with a discussion of the future use of in silico methods within developmental neurotoxicity testing, and the role of regulatory bodies in promoting advancements within the space.

8.
Stem Cell Res Ther ; 15(1): 297, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256801

RESUMO

BACKGROUND: Stem cell-based therapy is a promising strategy for treating Parkinson's disease (PD) characterized by the loss of dopaminergic neurons. Recently, induced neural stem cell-derived dopaminergic precursor cells (iNSC-DAPs) have been emerged as a promising candidate for PD cell therapy because of a lower tumor-formation ability. Designer receptors exclusively activated by designer drugs (DREADDs) are useful tools for examining functional synaptic connections with host neurons. METHODS: DREADD knock-in human iNSCs to express excitatory hM3Dq and inhibitory hM4Di receptors were engineered by CRISPR. The knock-in iNSCs were differentiated into midbrain dopaminergic precursor cells (DAPs) and transplanted into PD mice. The various behavior test such as the Apomorphine-induced rotation test, Cylinder test, Rotarod test, and Open field test were assessed at 4, 8, or 12 weeks post-transplantation with or without the administration of CNO. Electrophysiology were performed to assess the integrated condition and modulatory function to host neurons. RESULTS: DREADD expressing iNSCs were constructed with normal neural stem cells characteristics, proliferation ability, and differentiation potential into dopaminergic neuorns. DAPs derived from DREADD expressing iNSC showed matched function upon administration of clozapine N-oxide (CNO) in vitro. The results of electrophysiology and behavioral tests of transplanted PD mouse models revealed that the grafts established synaptic connections with downstream host neurons and exhibited excitatory or inhibitory modulation in response to CNO in vivo. CONCLUSION: iNSC-DAPs are a promising candidate for cell replacement therapy for Parkinson's disease. Remote DREADD-dependent activation of iNSC-DAP neurons significantly enhanced the beneficial effects on transplanted mice with Parkinson's disease.


Assuntos
Diferenciação Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Células-Tronco Neurais , Doença de Parkinson , Animais , Neurônios Dopaminérgicos/metabolismo , Camundongos , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , Doença de Parkinson/terapia , Clozapina/análogos & derivados , Clozapina/farmacologia
9.
Stem Cell Res Ther ; 15(1): 285, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256856

RESUMO

Accumulating evidence has shown that some hallucinogens, such as LSD, have fast and persistent effects on anxiety and depression. According to a proposed mechanism, LSD activates the TrkB and HTR2A signaling pathways, which enhance the density of neuronal dendritic spines and synaptic function, and thus promote brain function. Moreover, TrkB signaling is also known to be crucial for neural stem cell (NSC)-mediated neuroregeneration to repair dysfunctional neurons. However, the impact of LSD on neural stem cells remains to be elucidated. In this study, we observed that LSD and BDNF activated the TrkB pathway in human NSCs similarly to neurons. However, unlike BDNF, LSD did not promote NSC proliferation. These results suggest that LSD may activate an alternative mechanism to counteract the effects of BDNF-TrkB signaling on NSCs. Our findings shed light on the previously unrecognized cell type-specificity of LSD. This could be crucial for deepening our understanding of the mechanisms underlying the effects of LSD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Alucinógenos , Dietilamida do Ácido Lisérgico , Células-Tronco Neurais , Receptor trkB , Transdução de Sinais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Alucinógenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor trkB/metabolismo , Dietilamida do Ácido Lisérgico/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/citologia , Glicoproteínas de Membrana
10.
Biophys Rep ; 10(4): 241-253, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39281200

RESUMO

The whole heart decellularized extracellular matrix (ECM) has become a promising scaffold material for cardiac tissue engineering. Our previous research has shown that the whole heart acellular matrix possesses the memory function regulating neural stem cells (NSCs) trans-differentiating to cardiac lineage cells. However, the cell subpopulations and phenotypes in the trans-differentiation of NSCs have not been clearly identified. Here, we performed single-cell RNA sequencing and identified 2,765 cells in the recellularized heart with NSCs revealing the cellular diversity of cardiac and neural lineage, confirming NSCs were capable of trans-differentiating into the cardiac lineage while maintaining the original ability to differentiate into the neural lineage. Notably, the trans-differentiated heart-like cells have dual signatures of neuroectoderm and cardiac mesoderm. This study unveils an in-depth mechanism underlying the trans-differentiation of NSCs and provides a new opportunity and theoretical basis for cardiac regeneration.

11.
Cells ; 13(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39329769

RESUMO

We previously demonstrated that boundary cap neural crest stem cells (BCs) induce the proliferation of beta-cells in vitro, increase survival of pancreatic islets (PIs) in vivo after transplantation, and themselves strongly increase their proliferation capacity after exposure to space conditions. Therefore, we asked if space conditions can induce the proliferation of beta-cells when PIs are alone or together with BCs in free-floating or 3D-printed form. During the MASER 15 sounding rocket experiment, half of the cells were exposed to 6 min of microgravity (µg), whereas another group of cells were kept in 1 g conditions in a centrifuge onboard. The proliferation marker EdU was added to the cells just before the rocket reached µg conditions. The morphological assessment revealed that PIs successfully survived and strongly proliferated, particularly in the free-floating condition, though the fusion of PIs hampered statistical analysis. Proliferation of beta-cells was displayed in 3D-printed islets two weeks after µg exposure, suggesting that the effects of µg may be delayed. Thus, PIs in 3D-printed scaffolds did not fuse, and this preparation is more suitable than free-floating specimens for morphological analysis in µg studies. PIs maintained their increased proliferation capacity for weeks after µg exposure, an effect that may not appear directly, but can emerge after a delay.


Assuntos
Proliferação de Células , Ilhotas Pancreáticas , Ausência de Peso , Animais , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Impressão Tridimensional
12.
ACS Chem Neurosci ; 15(19): 3482-3495, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39288278

RESUMO

Aging and various neurodegenerative diseases cause significant reduction in adult neurogenesis and simultaneous increase in quiescent neural stem cells (NSCs), which impact the brain's regenerative capabilities. To deal with this challenging issue, current treatments involve stem cell transplants or prevention of neurodegeneration; however, the efficacy or success of this process remains limited. Therefore, extensive and focused investigation is highly demanding to overcome this challenging task. Here, we have designed an efficient peptide-based EphA4 receptor-targeted ligand through an in silico approach. Further, this strategy involves chemical conjugation of the peptide with adipose tissue stem cell-derived EV (Exo-pep-11). Interestingly, our newly designed engineered EV, Exo-pep-11, targets NSC through EphA4 receptors, which offers promising therapeutic advantages by stimulating NSC proliferation and subsequent differentiation. Our result demonstrates that NSC successfully internalized Exo-pep-11 in both in vitro culture conditions as well as in the in vivo aging rats. We found that the uptake of Exo-pep-11 decreased by ∼2.3-fold when NSC was treated with EphA4 antibody before Exo-pep-11 incubation, which confirms the receptor-specific uptake of Exo-pep-11. Exo-pep-11 treatment also increases NSC proliferation by ∼1.9-fold and also shows ∼1.6- and ∼2.4-fold increase in expressions of Nestin and ID1, respectively. Exo-pep-11 also has the potential to increase neurogenesis in aging rats, which is confirmed by ∼1.6- and ∼1.5-fold increases in expressions of TH and Tuj1, respectively, in rat olfactory bulb. Overall, our findings highlight the potential role of Exo-pep-11 for prospective applications in combating age-related declines in NSC activity and neurogenesis.


Assuntos
Envelhecimento , Vesículas Extracelulares , Células-Tronco Neurais , Neurogênese , Receptor EphA4 , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Ratos , Envelhecimento/efeitos dos fármacos , Receptor EphA4/metabolismo , Neurogênese/fisiologia , Neurogênese/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Peptídeos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Rejuvenescimento/fisiologia , Ratos Sprague-Dawley
13.
Cells Tissues Organs ; 213(5): 382-389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39191219

RESUMO

INTRODUCTION: Neurogenesis in the adult brain may play an important role in memory and cognition; however, knowledge of neurogenic markers in the human brain remains limited. We compared the single-nucleus transcriptome of the hippocampus with that of other cortical regions to identify hippocampus-specific neurogenic markers. METHODS: We analyzed 26,189 nuclei from four human brains collected within 16 h of death. Clustering and annotation were performed to examine differential expression, gene ontology, and intercellular communication. DCX expression was validated by ddPCR. RESULTS: Immature markers such as DCX, CALB2, NES, SOX2, PAX6, DPYSL3, and TUBB3 were expressed in both hippocampus and prefrontal cortex, with higher levels in the prefrontal cortex. ddPCR confirmed higher expression of DCX in the prefrontal cortex. DCX was involved in both neurogenesis and neuroprotection pathways. CONCLUSION: Neurogenic markers are not definitive indicators of adult neurogenesis as their roles are more complex than previously understood.


Assuntos
Proteína Duplacortina , Hipocampo , Neurogênese , Humanos , Hipocampo/metabolismo , Proteínas do Domínio Duplacortina , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Transcriptoma , Masculino , Adulto , Feminino , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia
14.
Eur J Neurosci ; 60(6): 5156-5168, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39126378

RESUMO

The subventricular zone (SVZ) is one of the neurogenic regions of the adult mammalian brain. Neural stem cells (NSCs) in the SVZ have certain key features: they express glial fibrillary acidic protein (GFAP), proliferate slowly, have a radial glia-like (RG-L) morphology, and are in contact with the cerebrospinal fluid (CSF). NSCs have been isolated by FACS to analyse them, but their morphology has not been systematically examined. To address this knowledge gap, we sparsely labelled RG-L cells in the SVZ of neonatal mice by introducing via electroporation a plasmid expressing fluorescent protein under the control of the GFAP promoter. We then classified RG-L cells into three types (RG-L1, 2, and 3) based on their morphologies. RG-L1 cells had a basal process with some branches and numerous fine processes. RG-L2 cells had a basal process, but fewer branches and fine processes than RG-L1 cells. RG-L3 cells had one basal process that was almost free of branches and fine processes. Importantly, regardless of the cell type, about half of their somata resided on the basal side of the SVZ. Based on changes in their proportions during postnatal development and their expression of GFAP and cell proliferation markers at the adult stage, we speculated that NSCs change their morphologies during development/maturation and not all NSCs must always be in the apical SVZ or in contact with the CSF. Our results indicate that in addition to expression of markers for NSCs, the morphology is a critical feature to identify NSCs.


Assuntos
Proteína Glial Fibrilar Ácida , Ventrículos Laterais , Células-Tronco Neurais , Animais , Camundongos , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Animais Recém-Nascidos , Neuroglia/citologia , Neuroglia/fisiologia , Neuroglia/metabolismo , Células Ependimogliais/citologia , Células Ependimogliais/fisiologia , Células Ependimogliais/metabolismo , Proliferação de Células/fisiologia
15.
Front Cell Neurosci ; 18: 1413843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109218

RESUMO

Multiple sclerosis is a chronic inflammatory disease of the central nervous system characterized by autoimmune destruction of the myelin sheath, leading to irreversible and progressive functional deficits in patients. Pre-clinical studies involving the use of neural stem cells (NSCs) have already demonstrated their potential in neuronal regeneration and remyelination. However, the exclusive application of cell therapy has not proved sufficient to achieve satisfactory therapeutic levels. Recognizing these limitations, there is a need to combine cell therapy with other adjuvant protocols. In this context, extracellular vesicles (EVs) can contribute to intercellular communication, stimulating the production of proteins and lipids associated with remyelination and providing trophic support to axons. This study aimed to evaluate the therapeutic efficacy of the combination of NSCs and EVs derived from oligodendrocyte precursor cells (OPCs) in an animal model of multiple sclerosis. OPCs were differentiated from NSCs and had their identity confirmed by gene expression analysis and immunocytochemistry. Exosomes were isolated by differential ultracentrifugation and characterized by Western, transmission electron microscopy and nanoparticle tracking analysis. Experimental therapy of C57BL/6 mice induced with experimental autoimmune encephalomyelitis (EAE) were grouped in control, treated with NSCs, treated with OPC-derived EVs and treated with a combination of both. The treatments were evaluated clinically using scores and body weight, microscopically using immunohistochemistry and immunological profile by flow cytometry. The animals showed significant clinical improvement and weight gain with the treatments. However, only the treatments involving EVs led to immune modulation, changing the profile from Th1 to Th2 lymphocytes. Fifteen days after treatment revealed a reduction in reactive microgliosis and astrogliosis in the groups treated with EVs. However, there was no reduction in demyelination. The results indicate the potential therapeutic use of OPC-derived EVs to attenuate inflammation and promote recovery in EAE, especially when combined with cell therapy.

16.
Int J Clin Exp Pathol ; 17(7): 208-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114503

RESUMO

BACKGROUND: Recent evidence suggests that the tumor stem cells that are responsible for the pathogenesis of gliomas have similar properties to those of neural stem cells. We have studied two of the most consistently expressed stem cell markers in gliomas, i.e., CD133 and Nestin, and compared them with respect to p53 expression and IDH status. OBJECTIVES: To assess the level of expression of Nestin and CD133, and identify a correlation among various grades of diffuse glioma with IDH status and expression of p53. MATERIALS AND METHODS: A cross-sectional retrospective study with 102 subjects for the expression of cancer stem cell markers; CD133 and Nestin and the correlation of their expression with that of p53 and IDH1 status in adult diffuse glioma. The study was conducted in the Departments of Pathology and Neurosurgery. The expression was assessed by immunohistochemistry on formalin-fixed paraffin-embedded sections. The scoring of expression of CD133 and Nestin was adapted from Zhang et al. The scoring for p53 was adopted from Aruna et al. Results: The diffuse gliomas were graded based on WHO into grade II (30.3%), grade III (28.4%), and grade IV (41.3%). Among WHO grade IV, 59.4% were primary, and 40.4% were secondary glioblastomas. 73% of the diffuse gliomas were IDH mutant, and p53 showed an overall expression of 76.4%. The expression of CD133 and Nestin were compared with the increasing grades of diffuse gliomas, which, when plotted on ROC curves, had AUCs of 0.6806 and 0.6119, respectively. Their expression showed a positive correlation with the IDH status of the tumor. CONCLUSIONS: Cancer stem cell markers CD133 and Nestin are expressed in diffuse glioma and have a higher expression with increasing WHO grade of malignancy. These cancer stem cell markers have shown significant association with the IDH-1 mutant status of diffuse gliomas. Hence, it can be inferred that diffuse gliomas with a higher expression of CD133 and Nestin have a poorer prognosis. Further, these cancer stem cell markers may be used as therapeutic targets in the future.

17.
Neuroscience ; 559: 64-76, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39209104

RESUMO

It has been widely established that neural stem cells (NSCs) exist in the adult mammalian brain. The area postrema (AP) and the ependymal cell layer of the central canal (CC) in the medulla were recently identified as NSC niches. There are two types of NSCs: astrocyte-like cells in the AP and tanycyte-like cells in the CC. However, limited information is currently available on the characteristics and functional significance of these NSCs and their progeny in the AP and CC. The AP is a part of the dorsal vagal complex (DVC), together with the nucleus of the solitary tract (Sol) and the dorsal motor nucleus of the vagus (10 N). DVC is the primary site for the integration of visceral neuronal and hormonal cues that act to inhibit food intake. Therefore, we examined the effects of high-fat diet (HFD) on NSCs and progenitor cells in the AP and CC. Eight-week-old male mice were fed HFD for short (1 week) and long periods (4 weeks). To detect proliferating cells, mice consecutively received intraperitoneal injections of BrdU for 7 days. Brain sections were processed with immunohistochemistry using various cell markers and BrdU antibodies. Our data demonstrated that adult NSCs and neural progenitor cells (NPCs) in the medulla responded more strongly to short-term HFD than to long-term HFD. HFD increased astrocyte density in the Sol and 10 N, and increased microglial/macrophage density in the AP and Sol. Furthermore, long-term HFD induced mild inflammation in the medulla, suggesting that it affected the proliferation of NSCs and NPCs.


Assuntos
Dieta Hiperlipídica , Bulbo , Células-Tronco Neurais , Animais , Células-Tronco Neurais/metabolismo , Masculino , Dieta Hiperlipídica/efeitos adversos , Bulbo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Proliferação de Células/fisiologia , Astrócitos/metabolismo
18.
EMBO Rep ; 25(8): 3678-3706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39080439

RESUMO

Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.


Assuntos
Hipocampo , Proteínas de Membrana , Células-Tronco Neurais , Neurogênese , Fator de Transcrição STAT5 , Animais , Camundongos , Proliferação de Células , Giro Denteado/metabolismo , Giro Denteado/citologia , Hipocampo/metabolismo , Hipocampo/citologia , Homeostase , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Convulsões/metabolismo , Convulsões/genética , Transdução de Sinais , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética
19.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007397

RESUMO

Many genes are known to regulate retinal regeneration after widespread tissue damage. Conversely, genes controlling regeneration after limited cell loss, as per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 100 genes identified seven knockouts that inhibited and 11 that promoted RGC regeneration. Surprisingly, 35 out of 36 genes known and/or implicated as being required for regeneration after widespread retinal damage were not required for RGC regeneration. The loss of seven even enhanced regeneration kinetics, including the proneural factors neurog1, olig2 and ascl1a. Mechanistic analyses revealed that ascl1a disruption increased the propensity of progenitor cells to produce RGCs, i.e. increased 'fate bias'. These data demonstrate plasticity in the mechanism through which Müller glia convert to a stem-like state and context specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.


Assuntos
Animais Geneticamente Modificados , Células Ganglionares da Retina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas/genética , Regeneração/genética , Regeneração/fisiologia , Retina/metabolismo , Retina/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de Transcrição
20.
Adv Biol (Weinh) ; 8(10): e2400224, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38963310

RESUMO

The maintenance and expansion of human neural stem cells (hNSCs) in 3D tissue scaffolds is a promising strategy in producing cost-effective hNSCs with quality and quantity applicable for clinical applications. A few biopolymers have been extensively used to fabricate 3D scaffolds, including hyaluronic acid, collagen, alginate, and chitosan, due to their bioactive nature and availability. However, these polymers are usually applied in combination with other biomolecules, leading to their responses difficult to ascribe to. Here, scaffolds made of chitosan, alginate, hyaluronic acid, or collagen, are explored for hNSC expansion under xeno-free and chemically defined conditions and compared for hNSC multipotency maintenance. This study shows that the scaffolds made of pure chitosan support the highest adhesion and growth of hNSCs, yielding the most viable cells with NSC marker protein expression. In contrast, the presence of alginate, hyaluronic acid, or collagen induces differentiation toward immature neurons and astrocytes even in the maintenance medium and absence of differentiation factors. The cells in pure chitosan scaffolds preserve the level of transmembrane protein profile similar to that of standard culture. These findings point to the potential of using pure chitosan scaffolds as a base scaffolding material for hNSC expansion in 3D.


Assuntos
Alginatos , Diferenciação Celular , Quitosana , Ácido Hialurônico , Células-Tronco Neurais , Alicerces Teciduais , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Alicerces Teciduais/química , Quitosana/química , Quitosana/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Alginatos/farmacologia , Alginatos/química , Proliferação de Células/efeitos dos fármacos , Colágeno , Técnicas de Cultura de Células/métodos , Células Cultivadas , Engenharia Tecidual/métodos , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA