Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pituitary ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180644

RESUMO

The evidence that pituitary hormones may bypass peripheral endocrine glands to exert remarkable effects on the skeleton is gaining ground. Both hormonal excess and deficit may determine impairment in bone structure, and they commonly result in bone loss in patients affected by pituitary and neuroendocrine disorders. Vertebral fractures are the most common skeletal alterations and may occur independently of bone mass. Use of vitamin D (VD) supplementation is still debated in this setting. This review will focus on the interactions between different metabolites of VD and pituitary hormones, and the effects of VD supplementation on bone metabolism in patients with pituitary diseases.

2.
Handb Clin Neurol ; 181: 337-350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238469

RESUMO

The hypothalamus, which is part of the brain of all vertebrate animals, is considered the link between the central nervous system (CNS) and (i) the endocrine system via the pituitary gland and (ii) with our organs via the autonomic nervous system. It synthesizes and releases neurohormones, which in turn stimulate or inhibit the secretion of other hormones within the CNS, and sends and receives signals to and from the peripheral nervous and endocrine systems. As the brain region responsible for energy homeostasis, the hypothalamus is the key regulator of thermoregulation, hunger and satiety, circadian rhythms, sleep and fatigue, memory and learning, arousal and reproductive cycling, blood pressure, and heart rate and thus orchestrates complex physiological responses in order to maintain metabolic homeostasis. These critical roles implicate the hypothalamus in neuroendocrine disorders such as obesity, diabetes, anorexia nervosa, bulimia, and others. In this chapter, we focus on the use of human-induced pluripotent stem cells (hiPSCs) and their differentiation into hypothalamic neurons in order to model neuroendocrine disorders such as extreme obesity in a dish. To do so, we discuss important steps of human hypothalamus development, neuroendocrine diseases related to the hypothalamus, multiple protocols to differentiate hiPSCs into hypothalamic neurons, and severe obesity modeling in vitro using hiPSCs-derived hypothalamic neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Hipotálamo , Neurogênese , Neurônios , Sistemas Neurossecretores
3.
Elife ; 62017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28695822

RESUMO

Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.


Assuntos
Deficiências do Desenvolvimento/genética , Haploinsuficiência , Transtornos Mentais/genética , Fatores de Transcrição/deficiência , Animais , Comportamento Animal , Encéfalo/patologia , Deficiências do Desenvolvimento/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Heterozigoto , Fator de Crescimento Insulin-Like I/metabolismo , Transtornos Mentais/fisiopatologia , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo
4.
NPJ Sci Food ; 1: 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31304249

RESUMO

More than one-third of American adults are obese and statistics are similar worldwide. Caloric intake and diet composition have large and lasting effects on cognition and emotion, especially during critical periods in development, but the neural mechanisms for these effects are not well understood. A clear understanding of the cognitive-emotional processes underpinning desires to over-consume foods can assist more effective prevention and treatments of obesity. This review addresses recent work linking dietary fat intake and omega-3 polyunsaturated fatty acid dietary imbalance with inflammation in developing, adult, and aged brains. Thus, early-life diet and exposure to stress can lead to cognitive dysfunction throughout life and there is potential for early nutritional interventions (e.g., with essential micronutrients) for preventing these deficits. Likewise, acute consumption of a high-fat diet primes the hippocampus to produce a potentiated neuroinflammatory response to a mild immune challenge, causing memory deficits. Low dietary intake of omega-3 polyunsaturated fatty acids can also contribute to depression through its effects on endocannabinoid and inflammatory pathways in specific brain regions leading to synaptic phagocytosis by microglia in the hippocampus, contributing to memory loss. However, encouragingly, consumption of fruits and vegetables high in polyphenolics can prevent and even reverse age-related cognitive deficits by lowering oxidative stress and inflammation. Understanding relationships between diet, cognition, and emotion is necessary to uncover mechanisms involved in and strategies to prevent or attenuate comorbid neurological conditions in obese individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA