Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.136
Filtrar
1.
Biomed Pharmacother ; 180: 117507, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378680

RESUMO

BACKGROUND: Neuropathic pain (NP) has a considerable impact on the global economic burden and seriously impairs patients' quality of life. Currently there is no evidence-based "effective" treatment and new treatments are needed. Recently, platelet rich plasma (PRP) has emerged as an alternative treatment. Therefore, a systematic review has been conducted to present an evidence-based assessment of the use of PRP in the treatment of NP. METHODS: Randomized studies that investigated the effect of PRP injection on patients with NP compared to alternative treatments or placebo were included. An encompassing search of specific databases, from their inception to April 2024, was performed. The databases were as follows: PubMed, Web of Sciences (MEDLINE) and Cochrane Library. The Cochrane Risk-of-Bias 2 tool was used to assess study methodological quality. RESULTS: A total of 12 randomized studies with 754 patients with different NP conditions were included in this systematic review. According to the results from the qualitative analysis, PRP injection exerted a positive effect on improving pain intensity on most of the trials (8 out of 12). In the remaining studies, no differences were found. A high safety profile was reported with no serious adverse effects in the analysed patients. CONCLUSION: PRP treatment might be an effective therapeutic approach for patients with different neuropathic pain conditions. The efficacy of PRP was not dependant on the aetiology of the underlying disorder; nevertheless, interpretations of the results should be performed cautiously, as for the under-representation of NP conditions.

2.
Pain Rep ; 9(6): e1173, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39391768

RESUMO

Introduction: Neuropathic pain (NP) poses significant challenges for individuals with spinal cord injury (SCI), often inadequately managed by current interventions. Immersive virtual reality (IVR) has emerged as a promising approach for pain modulation, yet robust evidence is lacking. Objectives: This pilot study investigated the analgesic effects of different IVR environments (scenic, somatic) compared with a control environment, and explored psychomotor properties influencing pain attenuation. Methods: Twenty-two participants with NP caused by SCI were randomized into 3 IVR environments: somatic (n = 8), scenic (n = 7), and control (n = 8), undergoing 3 weekly sessions over 4 weeks with baseline, postintervention, and one-month follow-ups. Results: There was a significant interaction effect between VR environment and time point on Neuropathic Pain Symptom Inventory scores (F(4,37.0) = 2.80, P = 0.04). Scenic VR participants exhibited reduced scores postintervention and at follow-up, with no significant changes in somatic VR or control environments. Similar trends were observed in secondary measures, such as Neuropathic Pain Scale and pain numeric rating scale. Enjoyment and presence were associated with decreased pain-change scores (F(1, 252) = 4.68, P = 0.03 for enjoyment; F(1, 223.342) = 7.92, P = 0.005 for presence), although not significantly influenced by VR environment or time point. Conclusion: Both environments showed reduced pain outcomes, underscoring the need for personalized IVR pain therapies and informing further technology development for NP management.

3.
Neurochem Int ; 180: 105877, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39384071

RESUMO

Neuropathic pain (NP) is a complex disorder caused by lesions or diseases affecting the somatosensory nervous system, severely impacting patients' quality of life. Recent studies suggest ferroptosis may be involved in NP induction, but its precise mechanisms remain unclear. We used GO and KEGG pathway enrichment analyses to functionally annotate ferroptosis-related differentially expressed genes (FRDs). Through STRING and the maximum cluster centrality (MCC) algorithm, we identified five hub FRDs (Jun, Timp1, Egfr, Cdkn1a, Cdkn2a). Single-cell analysis revealed significant expression of Jun and Timp1 in neurons. Our study confirmed the association between ferroptosis and endoplasmic reticulum stress (ERS) in NP and validated changes in hub FRD expression across various NP animal models. In vitro experiments demonstrated that Jun regulates neuronal ferroptosis and ERS, particularly by modulating Timp1 expression. Transcription factor prediction and JASPAR binding site analysis elucidated the regulatory network involving Jun. ROC curve analysis of external datasets highlighted the diagnostic potential of hub FRDs and ERS-related differentially expressed genes (ERSRDs) in NP. Using the Comparative Toxicogenomics Database (CTD), we identified estradiol (E2) as a potential therapeutic drug targeting hub FRDs and ERSRDs. Molecular docking predicted its binding sites with Jun and Timp1, and in vivo experiments confirmed that E2 alleviated NP and reversed the expression of Jun and Timp1. This study underscores the crucial role of Jun and Timp1 in the interplay between ferroptosis and ERS, offering new insights and promising avenues for NP treatment.

4.
Cureus ; 16(9): e69028, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39385859

RESUMO

Neuropathic pain, a debilitating condition, remains challenging to manage effectively. An insight into neuropharmacological mechanisms is critical for optimizing treatment strategies. This systematic review aims to evaluate the role of neuropharmacological agents based on their efficacy, involved neurotransmitters, and receptors. A manual literature search was undertaken in PubMed including Medline, Cochrane Library, Google Scholar, Plos One, Science Direct, and clinicaltrials.gov from 2013 until 2023. Out of the 13 included studies, seven evaluated the role of gabapentinoids. Two main drugs from this group, gabapentin and pregabalin, function by binding voltage-gated calcium channels, lowering neuronal hyperexcitability and pain signal transmission, thereby relieving neuropathic pain. Four of the pooled studies reported the use of tricyclic antidepressants (TCAs) including amitriptyline and nortriptyline which work by blocking the reuptake of norepinephrine and serotonin, their increased concentration is thought to be central to their analgesic effect. Three articles assessed the use of serotonin-norepinephrine reuptake inhibitors (SNRIs) and reported them as effective as the TCAs in managing neuropathic pain. They work by augmenting serotonin and norepinephrine. Three studies focused on the use of selective serotonin reuptake inhibitors (SSRIs), modulating their effect by increasing serotonin levels; however, they were reported as not a highly effective treatment option for neuropathic pain. One of the studies outlined the use of cannabinoids for neuropathic pain by binding to cannabinoid receptors with only mild adverse effects. It is concluded that gabapentinoids, TCAs, and SNRIs were reported as the most effective therapy for neuropathic pain; however, for trigeminal neuralgia, anticonvulsants like carbamazepine were considered the most effective. Opioids were considered second-line drugs for neuropathic pain as they come with adverse effects and a risk of dependence. Ongoing research is exploring novel drugs like ion channels and agents modulating pain pathways for neuropathic pain management. Our review hopes to inspire further research into patient stratification by their physiology, aiding quicker and more accurate management of neuropathic pain while minimizing inadvertent side effects.

5.
Iran J Basic Med Sci ; 27(11): 1417-1422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39386234

RESUMO

Objectives: Most individuals who suffer from spinal cord injury (SCI) experience neuropathic pain, which currently has no effective treatment. In this study, we examined how testosterone affects neuropathic pain resulting from SCI. Materials and Methods: We administered three different doses of testosterone (4, 8, 16 mg/kg, intraperitoneal) to male rats after an electrolytic lesion of the spinothalamic tract. We then conducted behavioral tests, including open field and von Frey tests, within 28 days post-SCI. On day 28 after SCI, we analyzed spinal tissue using western blot to measure the levels of ionized calcium binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), phospho-extracellular signal-regulated kinase (p-ERK1/2), and p-P38 at the injury site. Results: The results showed that testosterone significantly improved both motor activity and mechanical allodynia compared to the SCI-only group. Testosterone also inhibited microglia and astrocyte activation. Furthermore, testosterone significantly decreased p-P38 and p-ERK levels. Conclusion: The findings indicate that testosterone may alleviate SCI-induced neuropathic pain by inhibiting the activation of astrocytes and microglia, as well as suppressing MAPK signaling pathways.

6.
J Hand Surg Glob Online ; 6(5): 749-755, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39381396

RESUMO

Purpose: A systematic review to identify treatment approaches for the management of pain following peripheral nerve injury. Methods: A published literature search was performed for the concepts of peripheral nerve injury and pain management with related synonyms. The strategies were created using a combination of controlled vocabulary terms and keywords and were executed in Embase.com, Ovid-Medline All, and Scopus from database inception. Database searches were completed on August 22, 2023. Results: The initial search resulted in a total of 1,793 citations. In total, 724 duplicates were removed, leaving 1,069 unique citations remaining for analysis. This review excluded all papers that were not specific to pain following peripheral nerve injury. Case and cohort studies (n < 5) were also excluded. Thirty-two articles on pain management strategies after peripheral nerve injury remained, with years of publication ranging from 1981 to 2023. An additional four articles were identified by manual search. Of the 36 articles reviewed, 15 articles reported on the approach to the treatment of pain after a peripheral nerve injury, and the other 22 articles consisted of cohort and case series studies. Conclusions: There is a lack of literature describing efficacy of various treatment strategies for pain following peripheral nerve injuries. Few studies provide clear, stepwise clinical guidance for practicing physicians and other health care providers on the treatment of these complicated patients.

7.
Am J Otolaryngol ; 45(6): 104505, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39383704
8.
Cell Rep Med ; : 101786, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39383871

RESUMO

Chronic pain affects one in five adults. It is not only a major cause of disability for individual patients but also a driver of costs for entire healthcare systems. Treatment of pain remains a challenge, and the use of opioids has further led to a concurrent opioid epidemic. In this review, we discuss current standard treatment options for chronic pain, including pharmacological, behavioral, and interventional treatments. In addition, we review ongoing research in different areas that will potentially unlock new therapies.

9.
Cell Biochem Biophys ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392551

RESUMO

Inflammation and Schwann cell apoptosis play critical roles in neuropathic pain after sciatic nerve injury. This study aimed to explore the function and mechanism of cimifugin in lipopolysaccharide (LPS)-stimulated rat Schwann cells and sciatic nerves of rats treated with chronic constriction injury (CCI). Thermal, mechanical and cold hyperalgesia of rats in response to cimifugin or mecobalamin (the positive drug control) treatment were evaluated through behavioral tests. H&E staining of sciatic nerves was performed for pathological observation. ELISA was conducted to assess concentrations of inflammatory cytokines in rat serum and sciatic nerves. The intensity of S100ß in sciatic nerves was determined using immunohistochemistry. Flow cytometry analysis was conducted for detection of Schwann cell apoptosis. RT-qPCR was performed to measure mRNA levels of inflammatory factors in Schwann cells. Immunofluorescence staining was performed to detect cellular p65/NF-κB activity. Western blotting was performed to quantify protein levels of apoptotic markers and factors associated with the NF-κB and MAPK pathways in rat nerves and Schwann cells. As shown by experimental data, cimifugin mitigated thermal, mechanical and cold hyperalgesia of CCI rats. Cimifugin repressed inflammatory cell infiltration, reduced proinflammatory cytokine levels while increasing anti-inflammatory factor (IL-10) level in serum or sciatic nerves of CCI rats. Cimifugin enhanced S100ß expression and downregulated apoptotic markers in vivo. The anti-inflammatory and anti-apoptotic properties of cimifugin were verified in the LPS-stimulated Schwann cells. Moreover, cimifugin suppressed nuclear translocation of p65 NF-κB in vitro and repressed the phosphorylation of IκB, p65 NF-κB, p38 MAPK, ERK1/2, as well as JNK in CCI rats. In conclusion, cimifugin alleviates neuropathic pain after sciatica by suppressing inflammatory response and Schwann cell apoptosis via inactivation of NF-κB and MAPK pathways.

10.
Pain Res Manag ; 2024: 9179928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372838

RESUMO

Although previous studies suggest that Piezo2 regulates chronic pain in the orofacial area, few studies have reported the direct evidence of Piezo2's involvement in inflammatory and neuropathic pain in the orofacial region. In this study, we used male Sprague Dawley rats to investigate the role of the Piezo2 pathway in the development of inflammatory and neuropathic pain. The present study used interleukin (IL)-1ß-induced pronociception as an inflammatory pain model. Subcutaneous injection of IL-1ß produced significant mechanical allodynia and thermal hyperalgesia. Subcutaneous injection of a Piezo2 inhibitor significantly blocked mechanical allodynia and thermal hyperalgesia induced by subcutaneously injected IL-1ß. Furthermore, the present study also used a neuropathic pain model caused by the misplacement of a dental implant, leading to notable mechanical allodynia as a consequence of inferior alveolar nerve injury. Western blot analysis revealed increased levels of Piezo2 in the trigeminal ganglion and the trigeminal subnucleus caudalis after inferior alveolar nerve injury. Furthermore, subcutaneous and intracisternal injections of a Piezo2 inhibitor blocked neuropathic mechanical allodynia. These results suggest that the Piezo2 pathway plays a critical role in the development of inflammatory and neuropathic pain in the orofacial area. Therefore, blocking the Piezo2 pathway could be the foundation for developing new therapeutic strategies to treat orofacial pain conditions.


Assuntos
Dor Facial , Hiperalgesia , Neuralgia , Ratos Sprague-Dawley , Animais , Masculino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Ratos , Dor Facial/tratamento farmacológico , Dor Facial/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/antagonistas & inibidores , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Arch Rehabil Res Clin Transl ; 6(3): 100361, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39372246

RESUMO

Objective: To evaluate the feasibility, safety, and potential health benefits of an 8-week home-based neurofeedback intervention. Design: Single-group preliminary study. Setting: Community-based. Participants: Nine community dwelling adults with chronic neuropathic pain, 6 women and 3 men, with an average age of 51.9 years (range, 19-78 years) and with a 7-day average minimum pain score of 4 of 10 on the visual analog pain scale. Interventions: A minimum of 5 neurofeedback sessions per week (40min/session) for 8 consecutive weeks was undertaken with a 12-week follow-up baseline electroencephalography recording period. Main Outcome Measures: Primary feasibility outcomes: accessibility, tolerability, safety (adverse events and resolution), and human and information technology (IT) resources required. Secondary outcomes: pain, sensitization, catastrophization, anxiety, depression, sleep, health-related quality of life, electroencephalographic activity, and simple participant feedback. Results: Of the 23 people screened, 11 were eligible for recruitment. One withdrew and another completed insufficient sessions for analysis, which resulted in 9 datasets analyzed. Three participants withdrew from the follow-up baselines, leaving 6 who completed the entire trial protocol. Thirteen adverse events were recorded and resolved: 1 was treatment-related, 4 were equipment-related, and 8 were administrative-related (eg, courier communication issues). The human and IT resources necessary for trial implementation were identified. There were also significant improvements in pain levels, depression, and anxiety. Six of 9 participants perceived minimal improvement or no change in symptoms after the trial, and 5 of 9 participants were satisfied with the treatment received. Conclusions: It is feasible and safe to conduct a home-based trial of a neurofeedback intervention for people with chronic neuropathic pain, when the human and IT resources are provided and relevant governance processes are followed. Improvements in secondary outcomes merit investigation with a randomized controlled trial.

12.
Pain Med ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365731

RESUMO

OBJECTIVE: To explore the clinical relevance and assay sensitivity of using personalized outcomes using data from a randomized clinical trial (RCT) in people with chemotherapy induced peripheral neuropathy (CIPN). DESIGN: This study is a secondary analysis that leveraged data from a RCT of transcutaneous electrical stimulation for CIPN to test whether personalized outcomes could minimize potential floor effects and increase the assay sensitivity of pain clinical trials (ie, ability to detect a true treatment effect). SETTING: Participants were recruited for a RCT from community oncology clinics in the U.S. PARTICIPANTS: Adults with CIPN (N = 72) who reported on average ≥4 intensity (measured via a 7-day baseline diary) for at least one of the following pain qualities hot/burning pain, sharp/shooting pain and/or cramping. METHODS: Personalized outcomes were defined based on participants' unique presentation of pain qualities at baseline, measured via 0-10 numeric rating scales (NRS), or ranking of the distress caused by the pain qualities. Analysis of covariance models estimated the treatment effect as measured by personalized and non-personalized outcomes. RESULTS: The adjusted mean difference between groups was higher using personalized outcomes (ie, 1.21-1.25 NRS points) compared to a non-personalized outcome (ie, 0.97 NRS points), although the standardized effect sizes were similar between outcomes (0.49-0.54). CONCLUSIONS: These results suggest that personalized pain quality outcomes could minimize floor effects, while providing similar assay sensitivity to non-personalized pain quality outcomes. Personalized outcomes better reflect an individual's unique experience, inherently providing more clinically relevant estimates of treatment effects. Personalized outcomes may be advantageous particularly for clinical trials in populations with high inter-individual variability in pain qualities.

13.
Brain Res Bull ; : 111092, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369764

RESUMO

Chronic pain, such as neuropathic pain, can lead to anxiety, depression, and other negative emotions, thereby forming comorbidities and increasing the risk of chronic pain over time. Both the infralimbic amygdala (IL) and the basolateral amygdala (BLA) are significantly associated with negative emotions and pain, and they are known to have reciprocal connections. However, the role of IL-BLA circuit pathways in neuropathic pain-induced anxiety and depression remains unexplored. Electroacupuncture (EA) is frequently employed in the treatment of chronic pain and emotional disorders. However, The mechanism by which EA mediates its analgesic and emotion-alleviating effects via the IL-BLA circuit remains uncertain. Here, we used chemogenetic manipulation combined with behavioral tests to detect pain induced anxiety-like and depression-like behaviors. We observed that activation of the IL-BLA circuit by chemogenetic activation induced depression-like behavior of mice. Additionally, we discovered that chemogenetic activation of the IL-BLA circuit successfully prevented the beneficial effects of EA on depression-like behavior brought on by chronic pain in mice with spared nerve injury (SNI). We discovered that SNI-induced depression-like behavior could be mitigated by inhibiting the circuit, and EA had a comparable depressive-relieving effect. Furthermore, the IL-BLA circuit's activation or inhibition had no effect on the anxiety-like feelings brought on by SNI. Overall, our findings identify a specific neural circuit that selectively regulates pain-induced depression-like emotions, without affecting pain-induced anxiety-like emotions. This discovery offers a precise target for future treatments of comorbid pain and depression and provides a plausible explanation for the efficacy of EA in treating depression-like emotions associated with chronic pain.

14.
ACS Chem Neurosci ; 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370752

RESUMO

Neuropathic pain is a prevalent complication following brachial plexus avulsion (BPA). Ferroptosis has been implicated in various nervous system disorders. However, the association between ferroptosis and neuropathic pain induced by BPA remains unclear. This study aimed to investigate the role of ferroptosis in BPA-induced neuropathic pain. A rat model of neuropathic pain was established via BPA induction. Pain thresholds of rats were measured after BPA surgery and intraperitoneal injection of Fer-1. On day 14 postsurgery, spinal dorsal horn (SDH) samples were collected for Western blotting, biochemical analysis, and immunohistochemistry to analyze the expression and distribution of ferroptosis-related markers. The relationships among 5-HT3a receptor, calcium/calmodulin (CaM) pathway, and ferroptosis were assessed via Western blotting, biochemical analysis, and lipid peroxidation assays, including iron and calcium content, reactive oxygen species, glutathione peroxidase 4 (GPX4), ACSL, and CaM expression. BPA-induced neuropathic pain was associated with iron accumulation, increased lipid peroxidation, dysregulated expression of Acyl-CoA synthetase long-chain family member 4, and GPX4, and changes in transferrin receptor, divalent metal transporter 1, and ferroportin-1 (FPN1). Intraperitoneal administration of Fer-1 reversed all of these alterations and mitigated mechanical and cold hypersensitivity. Inhibition of the 5-HT3a receptor reduced the extent of ferroptosis. Furthermore, the 5-HT3a receptor can regulate the calcium/CaM pathway via L-type calcium channels (LTCCs), and blocking LTCCs with nifedipine also alleviated ferroptosis in the SDH of BPA rats. Taken together, in rats with BPA, the development of neuropathic pain involves ferroptosis, which is regulated by the 5-HT3a receptor through the LTCCs and the calcium/CaM signaling pathway in the SDH.

15.
Neuroscience ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368605

RESUMO

Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.

16.
J Biol Chem ; : 107848, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357831

RESUMO

Development of chronic neuropathic pain involves complex synaptic and epigenetic mechanisms. Nerve injury causes sustained upregulation of α2δ-1 (encoded by the Cacna2d1 gene) in the dorsal root ganglion (DRG), contributing to pain hypersensitivity by directly interacting with and augmenting presynaptic NMDA receptor activity in the spinal dorsal horn. Under normal conditions, histone deacetylase 2 (HDAC2) is highly enriched at the Cacna2d1 gene promoter in the DRG, which constitutively suppresses Cacna2d1 transcription. However, nerve injury leads to HDAC2 dissociation from the Cacna2d1 promoter, promoting the enrichment of active histone marks and Cacna2d1 transcription in primary sensory neurons. In this study, we determined the mechanism by which nerve injury diminishes HDAC2 occupancy at the Cacna2d1 promoter in the DRG. Spinal nerve injury in rats increased serine-394 phosphorylation of HDAC2 in the DRG. Coimmunoprecipitation showed that nerve injury enhanced the physical interaction between HDAC2 and casein kinase II (CK2) in the DRG. Furthermore, repeated intrathecal treatment with CX-4945, a potent and specific CK2 inhibitor, markedly reversed nerve injury-induced pain hypersensitivity, HDAC2 phosphorylation, and α2δ-1 expression levels in the DRG. In addition, treatment with CX-4945 largely restored HDAC2 enrichment at the Cacna2d1 promoter and reduced the elevated levels of acetylated H3 and H4 histones, particularly H3K9ac and H4K5ac, at the Cacna2d1 promoter in the injured DRG. These findings suggest that nerve injury increases CK2 activity and CK2-HDAC2 interactions, which enhance HDAC2 phosphorylation in the DRG. This, in turn, diminishes HDAC2 enrichment at the Cacna2d1 promoter, thereby promoting Cacna2d1 transcription.

17.
Neuropharmacology ; 261: 110176, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357736

RESUMO

The mechanisms of neuropathic pain (NP) are considered multifactorial. Alterations in the suppressor of cytokine signaling 1 (SOCS1) play a critical role in neural damage and inflammation. Epigenetic RNA modifications, specifically N6-methyladenosine (m6A) methylation, have increasingly been observed to impact the nervous system. Nevertheless, there is a scarcity of studies investigating the connection between m6A methylation and SOCS1 in the molecular mechanisms of NP. This study investigates the roles and potential mechanisms of the m6A methyltransferase like 3 (METTL3) and SOCS1 in female rats with spinal nerve ligation (SNL)-induced NP. It was found that in NP, both METTL3 and overall m6A levels were downregulated, leading to the activation of pro-inflammatory cytokines, such as interleukin-1ß, interleukin 6, and tumor necrosis factor-α. Notably, The SOCS1 mRNA is significantly enriched with m6A methylation modifications, with the most prevalent m6A methyltransferase METTL3 stabilizing the downregulation of SOCS1 by targeting m6A methylation modifications at positions 151, 164, and 966.Exogenous supplementation of METTL3 improved NP-related neuroinflammation and behavioral dysfunctions, but these effects could be reversed by the absence of SOCS1. Additionally, the depletion of endogenous SOCS1 promoted NP progression by inducing the toll-like receptor 4 (TLR4) signaling pathway. The dysregulation of METTL3 and the resulting m6A modification of SOCS1 form a crucial epigenetic regulatory loop that promotes the progression of NP. Targeting the METTL3/SOCS1 axis might offer new insights into potential therapeutic strategies for NP.

18.
Pain Physician ; 27(7): E725-E730, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39353120

RESUMO

BACKGROUND: Peripheral neuropathy is estimated to be prevalent in up to 12% of the population, increasing to 30% in older demographics. This makes peripheral neuropathy one of the most common neurological diseases in the United States. OBJECTIVES: This retrospective study aims to report on the efficacy and safety of peripheral nerve stimulation (PNS) on the treatment of peripheral neuropathy in a commercial setting. STUDY DESIGN: This was a retrospective study. A chart review was conducted for all eligible study patients. SETTING: This study was conducted at the Advanced Spine and Pain Center in San Antonio, a center focused on physical medicine and rehabilitation, pain management and advanced interventional procedures that effectively ease pain. METHODS: From September 2018 through July 2022, a total of 63 consecutive patients with peripheral neuropathy who presented with chronic pain symptoms originating from the shoulder, hip, knee, ankle, and groin were trialed in this study. All patients were required to be at least 18 years old. These patients underwent PNS therapy via implantation of the Freedom® PNS System (Curonix LLC) in order to treat their chronic pain related to or due to peripheral neuropathy from various peripheral nerve origins. RESULTS: The mean Numeric Rating Scale (NRS-11) score of 63 patients at baseline was 7.24 (SD, 1.80). At 2-3 weeks postimplantation, the mean NRS-11 score decreased to 3.43 (SD, 2.38). A total of 53 out of the 63 patients reported a reduction in their NRS-11 score at the 2-3 week follow-up. A total of 24 patients completed a long-term follow-up. The mean follow-up time was 763.13 days (SD, 428.42); all patients had their PNS system permanently implanted for at least 8 months (range, 255-1,592 days). LIMITATIONS: This was a retrospective study investigating the efficacy and safety of the Freedom® PNS System in patients with peripheral neuropathy. We were limited to the data available in the patient charts. CONCLUSION: PNS effectively treats chronic pain due to peripheral neuropathy for patients who have failed other conservative treatments.


Assuntos
Neuroestimuladores Implantáveis , Doenças do Sistema Nervoso Periférico , Humanos , Estudos Retrospectivos , Doenças do Sistema Nervoso Periférico/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Nervos Periféricos , Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/instrumentação , Idoso , Dor Crônica/terapia , Manejo da Dor/métodos , Manejo da Dor/instrumentação , Adulto
19.
Brain Commun ; 6(5): fcae280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355006

RESUMO

Electrical stimulation of spinal networks below a spinal cord injury is a promising approach to restore functions compromised by inadequate and/or inappropriate neural drive. The most translationally successful examples are paradigms intended to increase neural transmission in weakened yet spared descending motor pathways and spinal motoneurons rendered dormant after being severed from their inputs by lesion. Less well understood is whether spinal stimulation is also capable of reducing neural transmission in pathways made pathologically overactive by spinal cord injury. Debilitating spasms, spasticity and neuropathic pain are all common manifestations of hyperexcitable spinal responses to sensory feedback. Whereas spasms and spasticity can often be managed pharmacologically, spinal cord injury-related neuropathic pain is notoriously medically refractory. Interestingly, however, spinal stimulation is a clinically available option for ameliorating neuropathic pain arising from aetiologies other than spinal cord injury, and the limited evidence available to date suggests that it holds considerable promise for reducing spinal cord injury-related neuropathic pain, as well. Spinal stimulation for pain amelioration has traditionally been assumed to modulate sensorimotor networks overlapping with those engaged by spinal stimulation for rehabilitation of movement impairments. Thus, we hypothesize that spinal stimulation intended to increase the ability to move voluntarily may simultaneously reduce transmission in spinal pain pathways. To test this hypothesis, we coupled a rat model of incomplete thoracic spinal cord injury, which results in moderate to severe bilateral movement impairments and spinal cord injury-related neuropathic pain, with in vivo electrophysiological measures of neural transmission in networks of spinal neurons integral to the development and persistence of the neuropathic pain state. We find that when intraspinal microstimulation is delivered to the ventral horn with the intent of enhancing voluntary movement, transmission through nociceptive specific and wide dynamic range neurons is significantly depressed in response to pain-related sensory feedback. By comparison, spinal responsiveness to non-pain-related sensory feedback is largely preserved. These results suggest that spinal stimulation paradigms could be intentionally designed to afford multi-modal therapeutic benefits, directly addressing the diverse, intersectional rehabilitation goals of people living with spinal cord injury.

20.
Front Pharmacol ; 15: 1440542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355777

RESUMO

Introduction: Having multiple pharmacological effects is a characteristic of Traditional Chinese Medicine (TCM). Currently, there is a lack of suitable methods to explore and discover modern diseases suitable for TCM treatment using this characteristic. Unsupervised machine learning technology is an efficient strategy to predict the pharmacological activity of drugs. This study takes Yuxuebi Tablet (YXB) as the research object. Using the unsupervised machine learning technology of drug cell functional fingerprint similarity research, the potential pharmacological effects of YXB were discovered and verified. Methods: LC-MS combined with the in vitro intestinal absorption method was used to identify components of YXB that could be absorbed by the intestinal tract of rats. Unsupervised learning hierarchical clustering was used to calculate the degree of similarity of cellular functional fingerprints between these components and 121 marketed Western drugs whose indications are diseases and symptoms that YXB is commonly used to treat. Then, based on the Library of Integrated Network-based Cellular Signatures database, pathway analysis was performed for selected Western drugs with high similarity in cellular functional fingerprints with the components of YXB to discover the potential pharmacological effects of YXB, which were validated by animal experiments. Results: We identified 40 intestinally absorbed components of YXB. Through predictive studies, we found that they have pharmacological effects very similar to non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. In addition, we found that they have very similar pharmacological effects to anti-neuropathic pain medications (such as gabapentin, duloxetine, and pethidine) and may inhibit the NF-κB signaling pathway and biological processes related to pain perception. Therefore, YXB may have an antinociceptive effect on neuropathic pain. Finally, we demonstrated that YXB significantly reduced neuropathic pain in a rat model of sciatic nerve chronic constriction injury (CCI). Transcriptome analysis further revealed that YXB regulates the expression of multiple genes involved in nerve injury repair, signal transduction, ion channels, and inflammatory response, with key regulatory targets including Sgk1, Sst, Isl1, and Shh. Conclusion: This study successfully identified and confirmed the previously unknown pharmacological activity of YXB against neuropathic pain through unsupervised learning prediction and experimental verification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA