Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
PNAS Nexus ; 3(7): pgae240, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984151

RESUMO

This study explores the efficacy of our novel and personalized brain-computer interface (BCI) therapy, in enhancing hand movement recovery among stroke survivors. Stroke often results in impaired motor function, posing significant challenges in daily activities and leading to considerable societal and economic burdens. Traditional physical and occupational therapies have shown limitations in facilitating satisfactory recovery for many patients. In response, our study investigates the potential of motor imagery-based BCIs (MI-BCIs) as an alternative intervention. In this study, MI-BCIs translate imagined hand movements into actions using a combination of scalp-recorded electrical brain activity and signal processing algorithms. Our prior research on MI-BCIs, which emphasizes the benefits of proprioceptive feedback over traditional visual feedback and the importance of customizing the delay between brain activation and passive hand movement, led to the development of RehabSwift therapy. In this study, we recruited 12 chronic-stage stroke survivors to assess the effectiveness of our solution. The primary outcome measure was the Fugl-Meyer upper extremity (FMA-UE) assessment, complemented by secondary measures including the action research arm test, reaction time, unilateral neglect, spasticity, grip and pinch strength, goal attainment scale, and FMA-UE sensation. Our findings indicate a remarkable improvement in hand movement and a clinically significant reduction in poststroke arm and hand impairment following 18 sessions of neurofeedback training. The effects persisted for at least 4 weeks posttreatment. These results underscore the potential of MI-BCIs, particularly our solution, as a prospective tool in stroke rehabilitation, offering a personalized and adaptable approach to neurofeedback training.

2.
Front Neurol ; 15: 1440752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966087
3.
Sci Eng Ethics ; 30(3): 18, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748291

RESUMO

This paper provides a justificatory rationale for recommending the inclusion of imagined future use cases in neurotechnology development processes, specifically for legal and policy ends. Including detailed imaginative engagement with future applications of neurotechnology can serve to connect ethical, legal, and policy issues potentially arising from the translation of brain stimulation research to the public consumer domain. Futurist scholars have for some time recommended approaches that merge creative arts with scientific development in order to theorise possible futures toward which current trends in technology development might be steered. Taking a creative, imaginative approach like this in the neurotechnology context can help move development processes beyond considerations of device functioning, safety, and compliance with existing regulation, and into an active engagement with potential future dynamics brought about by the emergence of the neurotechnology itself. Imagined scenarios can engage with potential consumer uses of devices that might come to challenge legal or policy contexts. An anticipatory, creative approach can imagine what such uses might consist in, and what they might imply. Justifying this approach also prompts a co-responsibility perspective for policymaking in technology contexts. Overall, this furnishes a mode of neurotechnology's emergence that can avoid crises of confidence in terms of ethico-legal issues, and promote policy responses balanced between knowledge, values, protected innovation potential, and regulatory safeguards.


Assuntos
Imaginação , Humanos , Formulação de Políticas , Criatividade , Neurociências/legislação & jurisprudência , Neurociências/ética , Tecnologia/legislação & jurisprudência , Tecnologia/ética
4.
Front Neurosci ; 18: 1373377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784094

RESUMO

This short review examines recent advancements in neurotechnologies within the context of managing unilateral spatial neglect (USN), a common condition following stroke. Despite the success of brain-computer interfaces (BCIs) in restoring motor function, there is a notable absence of effective BCI devices for treating cerebral visual impairments, a prevalent consequence of brain lesions that significantly hinders rehabilitation. This review analyzes current non-invasive BCIs and technological solutions dedicated to cognitive rehabilitation, with a focus on visuo-attentional disorders. We emphasize the need for further research into the use of BCIs for managing cognitive impairments and propose a new potential solution for USN rehabilitation, by combining the clinical subtleties of this syndrome with the technological advancements made in the field of neurotechnologies.

5.
IBRO Neurosci Rep ; 16: 582-597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38774060

RESUMO

After more than half a century of research and development (R&D), Brain-computer interface (BCI)-based Neurotechnology continues to progress as one of the leading technologies of the 2020 s worldwide. Various reports and academic literature in Europe and the United States (U.S.) have outlined the trends in the R&D of neurotechnology and the consideration of ethical issues, and the importance of the formulation of ethical principles, guidance and industrial standards as well as the development of relevant human resources has been discussed. However, limited number studies have focused on neurotechnology R&D, the dissemination of neuroethics related to the academic foundation advancing the discussion on ethical principles, guidance and standards or human resource development in the Asian region. This study fills in this gap in understanding of Eastern Asian (China, Korea and Japan) situation based on the participation in activities to develop ethical principles, guidance, and industrial standards for appropriate use of neurotechnology, in addition to literature survey and clinical registries' search investigation reflecting the trends in neurotechnology R&D as well as its social implication in Asian region. The current study compared the results with the situation in Europa and the U.S. and discussed issues that need to be addressed in the future and discussed the significance and potential of corporate consortium initiatives in Japan and examples of ethics and governance activities in Asian Countries.

6.
Neurophotonics ; 11(2): 024308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38764942

RESUMO

Significance: Near-infrared laser illumination is a non-invasive alternative/complement to classical stimulation methods in neuroscience but the mechanisms underlying its action on neuronal dynamics remain unclear. Most studies deal with high-frequency pulsed protocols and stationary characterizations disregarding the dynamic modulatory effect of sustained and activity-dependent stimulation. The understanding of such modulation and its widespread dissemination can help to develop specific interventions for research applications and treatments for neural disorders. Aim: We quantified the effect of continuous-wave near-infrared (CW-NIR) laser illumination on single neuron dynamics using sustained stimulation and an open-source activity-dependent protocol to identify the biophysical mechanisms underlying this modulation and its time course. Approach: We characterized the effect by simultaneously performing long intracellular recordings of membrane potential while delivering sustained and closed-loop CW-NIR laser stimulation. We used waveform metrics and conductance-based models to assess the role of specific biophysical candidates on the modulation. Results: We show that CW-NIR sustained illumination asymmetrically accelerates action potential dynamics and the spiking rate on single neurons, while closed-loop stimulation unveils its action at different phases of the neuron dynamics. Our model study points out the action of CW-NIR on specific ionic-channels and the key role of temperature on channel properties to explain the modulatory effect. Conclusions: Both sustained and activity-dependent CW-NIR stimulation effectively modulate neuronal dynamics by a combination of biophysical mechanisms. Our open-source protocols can help to disseminate this non-invasive optical stimulation in novel research and clinical applications.

7.
Trends Neurosci ; 47(5): 338-354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570212

RESUMO

The functional properties of the infant brain are poorly understood. Recent advances in cognitive neuroscience are opening new avenues for measuring brain activity in human infants. These include novel uses of existing technologies such as electroencephalography (EEG) and magnetoencephalography (MEG), the availability of newer technologies including functional near-infrared spectroscopy (fNIRS) and optically pumped magnetometry (OPM), and innovative applications of functional magnetic resonance imaging (fMRI) in awake infants during cognitive tasks. In this review article we catalog these available non-invasive methods, discuss the challenges and opportunities encountered when applying them to human infants, and highlight the potential they may ultimately hold for advancing our understanding of the youngest minds.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Lactente , Magnetoencefalografia/métodos , Neurociências/métodos , Eletroencefalografia/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos
8.
Ann Biomed Eng ; 52(8): 1937-1939, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38602573

RESUMO

Neuralink is a neurotechnology company founded by Elon Musk in 2016, which has been quietly developing revolutionary technology allowing for ultra-high precision bidirectional communication between external devices and the brain. In this paper, we explore the multifaceted ethical considerations surrounding neural interfaces, analyzing potential societal impacts, risks, and call for a need for responsible innovation. Despite the technological, medical, medicolegal, and ethical challenges ahead, neural interface technology remains extremely promising and has the potential to create a new era of medicine.


Assuntos
Interfaces Cérebro-Computador , Humanos , Encéfalo/fisiologia , Interfaces Cérebro-Computador/ética
9.
Front Hum Neurosci ; 18: 1385427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562225

RESUMO

Non-invasive brain stimulation (NIBS) is a complex and multifaceted approach to modulating brain activity and holds the potential for broad accessibility. This work discusses the mechanisms of the four distinct approaches to modulating brain activity non-invasively: electrical currents, magnetic fields, light, and ultrasound. We examine the dual stochastic and deterministic nature of brain activity and its implications for NIBS, highlighting the challenges posed by inter-individual variability, nebulous dose-response relationships, potential biases and neuroanatomical heterogeneity. Looking forward, we propose five areas of opportunity for future research: closed-loop stimulation, consistent stimulation of the intended target region, reducing bias, multimodal approaches, and strategies to address low sample sizes.

10.
Front Neurosci ; 18: 1328540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435056

RESUMO

Novel bioelectronic medical devices that target neural control of visceral organs (e.g., liver, gut, spleen) or inflammatory reflex pathways are innovative class III medical devices like implantable cardiac pacemakers that are lifesaving and life-sustaining medical devices. Bringing innovative neurotechnologies early into the market and the hands of treatment providers would benefit a large population of patients inflicted with autonomic and chronic immune disorders. Medical device manufacturers and software developers widely use the Waterfall methodology to implement design controls through verification and validation. In the Waterfall methodology, after identifying user needs, a functional unit is fabricated following the verification loop (design, build, and verify) and then validated against user needs. Considerable time can lapse in building, verifying, and validating the product because this methodology has limitations for adjusting to unanticipated changes. The time lost in device development can cause significant delays in final production, increase costs, and may even result in the abandonment of the device development. Software developers have successfully implemented an Agile methodology that overcomes these limitations in developing medical software. However, Agile methodology is not routinely used to develop medical devices with implantable hardware because of the increased regulatory burden of the need to conduct animal and human studies. Here, we provide the pros and cons of the Waterfall methodology and make a case for adopting the Agile methodology in developing medical devices with physical components. We utilize a peripheral nerve interface as an example device to illustrate the use of the Agile approach to develop neurotechnologies.

11.
Front Neurosci ; 18: 1332827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440397

RESUMO

Printable electronics for neurotechnology is a rapidly emerging field that leverages various printing techniques to fabricate electronic devices, offering advantages in rapid prototyping, scalability, and cost-effectiveness. These devices have promising applications in neurobiology, enabling the recording of neuronal signals and controlled drug delivery. This review provides an overview of printing techniques, materials used in neural device fabrication, and their applications. The printing techniques discussed include inkjet, screen printing, flexographic printing, 3D printing, and more. Each method has its unique advantages and challenges, ranging from precise printing and high resolution to material compatibility and scalability. Selecting the right materials for printable devices is crucial, considering factors like biocompatibility, flexibility, electrical properties, and durability. Conductive materials such as metallic nanoparticles and conducting polymers are commonly used in neurotechnology. Dielectric materials, like polyimide and polycaprolactone, play a vital role in device fabrication. Applications of printable devices in neurotechnology encompass various neuroprobes, electrocorticography arrays, and microelectrode arrays. These devices offer flexibility, biocompatibility, and scalability, making them cost-effective and suitable for preclinical research. However, several challenges need to be addressed, including biocompatibility, precision, electrical performance, long-term stability, and regulatory hurdles. This review highlights the potential of printable electronics in advancing our understanding of the brain and treating neurological disorders while emphasizing the importance of overcoming these challenges.

12.
Front Psychol ; 15: 1330439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476399

RESUMO

This paper discusses a landmark ruling by the Chilean Supreme Court of August 9, 2023 dealing with the right to mental privacy, originated with an action for constitutional protection filed on behalf of Guido Girardi Lavin against Emotiv Inc., a North American company based in San Francisco, California that is commercializing the device "Insight." This wireless device functions as a headset with sensors that collect information about the brain's electrical activity (i.e., neurodata). The discussion revolves around whether neurodata can be considered personal data and whether they could be classified into a special category. The application of the present legislation on data (the most obsolete, such as the Chilean law, and the most recent EU law) does not seem adequate to protect neurodata. The use of neurodata raises ethical and legal concerns that are not fully addressed by current regulations on personal data protection. Despite not being necessarily considered personal data, neurodata represent the most intimate aspects of human personality and should be protected in light of potential new risks. The unique characteristics of neurodata, including their interpretive nature and potential for revealing thoughts and intentions, pose challenges for regulation. Current data protection laws do not differentiate between different types of data based on their informational content, which is relevant for protecting individual rights. The development of new technologies involving neurodata requires particular attention and careful consideration to prevent possible harm to human dignity. The regulation of neurodata must account for their specific characteristics and the potential risks they pose to privacy, confidentiality, and individual rights. The answer lies in the reconfiguration of human rights known as "neurorights" that goes beyond the protection of personal data.

14.
Elife ; 132024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386406

RESUMO

Blindness affects millions of people around the world. A promising solution to restoring a form of vision for some individuals are cortical visual prostheses, which bypass part of the impaired visual pathway by converting camera input to electrical stimulation of the visual system. The artificially induced visual percept (a pattern of localized light flashes, or 'phosphenes') has limited resolution, and a great portion of the field's research is devoted to optimizing the efficacy, efficiency, and practical usefulness of the encoding of visual information. A commonly exploited method is non-invasive functional evaluation in sighted subjects or with computational models by using simulated prosthetic vision (SPV) pipelines. An important challenge in this approach is to balance enhanced perceptual realism, biologically plausibility, and real-time performance in the simulation of cortical prosthetic vision. We present a biologically plausible, PyTorch-based phosphene simulator that can run in real-time and uses differentiable operations to allow for gradient-based computational optimization of phosphene encoding models. The simulator integrates a wide range of clinical results with neurophysiological evidence in humans and non-human primates. The pipeline includes a model of the retinotopic organization and cortical magnification of the visual cortex. Moreover, the quantitative effects of stimulation parameters and temporal dynamics on phosphene characteristics are incorporated. Our results demonstrate the simulator's suitability for both computational applications such as end-to-end deep learning-based prosthetic vision optimization as well as behavioral experiments. The modular and open-source software provides a flexible simulation framework for computational, clinical, and behavioral neuroscientists working on visual neuroprosthetics.


Assuntos
Fosfenos , Próteses Visuais , Animais , Humanos , Simulação por Computador , Software , Cegueira/terapia
15.
Adv Healthc Mater ; : e2303401, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354063

RESUMO

Extracellular recordings with planar microelectrodes are the gold standard technique for recording the fast action potentials of neurons in the intact brain. The introduction of microfabrication techniques has revolutionized the in vivo recording of neuronal activity and introduced high-density, multi-electrode arrays that increase the spatial resolution of recordings and the number of neurons that can be simultaneously recorded. Despite these innovations, there is still debate about the ideal electrical transfer characteristics of extracellular electrodes. This uncertainty is partly due to the lack of systematic studies comparing electrodes with different characteristics, particularly for chronically implanted arrays over extended time periods. Here a high-density, flexible, and thin-film array is fabricated and tested, containing four distinct electrode types differing in surface material and surface topology and, thus, impedance. It is found that recording quality is strongly related to electrode impedance with signal amplitude and unit yield negatively correlated to impedance. Electrode impedances are stable for the duration of the experiment (up to 12 weeks) and recording quality does not deteriorate. The findings support the expectation from the theory that recording quality will increase as impedance decreases.

16.
Hastings Cent Rep ; 54(1): 24-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38390679

RESUMO

We argue that in implanted neurotechnology research, participants and researchers experience what Henry Richardson has called "moral entanglement." Participants partially entrust researchers with access to their brains and thus to information that would otherwise be private, leading to created intimacies and special obligations of beneficence for researchers and research funding agencies. One of these obligations, we argue, is about continued access to beneficial technology once a trial ends. We make the case for moral entanglement in this context through exploration of participants' vulnerability, uncompensated risks and burdens, depth of relationship with the research team, and dependence on researchers in implanted neurotechnology trials.


Assuntos
Encéfalo , Obrigações Morais , Humanos , Beneficência
17.
Biol Sport ; 41(1): 3-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188113

RESUMO

A rapidly emerging area of interest in high-pressure environments is that of pupillometry, where handheld quantitative infrared pupillometers (HQIPs) are able to track psycho-physiological fatigue in a fast, objective, valid, reliable, and non-invasive manner. However, the application of HQIPs in the context of athlete monitoring is yet to be determined. Therefore, the main aim of this pilot study was to examine the potential usefulness of a HQIP to monitor game-induced fatigue inside a professional female basketball setting by determining its (1) test-retest repeatability, (2) relationship with other biomarkers of game-induced fatigue, and (3) time-course from rested to fatigued states. A non-ophthalmologic practitioner performed a standardized Pupil Light Reflex (PLR) test using a medically graded HQIP among 9 professional female basketball players (2020-2021 Euro Cup) at baseline, 24-h pre-game (GD-1), 24-h post-game (GD+1) and 48-h post-game (GD+2). This was repeated over four subsequent games, equalling a total of 351 observations per eye. Two out of seven pupillometrics displayed good ICCs (0.95-0.99) (MinD and MaxD). Strong significant relationships were found between MaxD, MinD, and all registered biomarkers of game-induced fatigue (r = 0.69-0.82, p < 0.05), as well as between CV, MCV, and cognitive, lower-extremity muscle, and physiological fatigue markers (r = 0.74-0.76, p < 0.05). Three pupillometrics were able to detect a significant difference between rested and fatigued states. In particular, PC (right) (F = 5.173, η2 = 0.115 p = 0.028) and MCV (right) (F = 3.976, η2 = 0.090 p = 0.049) significantly decreased from baseline to GD+2, and LAT (left) (F = 4.023, η2 = 0.109 p = 0.009) significantly increased from GD-1 to GD+2. HQIPs have opened a new window of opportunity for monitoring game-induced fatigue in professional female basketball players. However, future research initiatives across larger and heterogenous samples, and longer investigation periods, are required to expand upon these preliminary findings.

18.
Epilepsy Behav ; 151: 109613, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183928

RESUMO

OBJECTIVE: Individuals with temporal lobe epilepsy (TLE) frequently demonstrate impairments in executive function, working memory, and/or declarative memory. It is recommended that screening for cognitive impairment is undertaken in all people newly diagnosed with epilepsy. However, standard neuropsychological assessments are a limited resource and thus not available to all. Our study investigated the use of robotic technology (the Kinarm robot) for cognitive screening. METHODS: 27 participants with TLE (17 left) underwent both a brief neuropsychological screening and a robotic (Kinarm) assessment. The degree of impairments and correlations between standardized scores from both approaches to assessments were analysed across different neurocognitive domains. Performance was compared between people with left and right TLE to look for laterality effects. Finally, the association between the duration of epilepsy and performance was assessed. RESULTS: Across the 6 neurocognitive domains (attention, executive function, language, memory, motor and visuospatial) assessed by our neuropsychological screening, all showed scores that significantly correlated with Kinarm tasks assessing the same cognitive domains except language and memory that were not adequately assessed with Kinarm. Participants with right TLE performed worse on most tasks than those with left TLE, including both visuospatial (typically considered right hemisphere), and verbal memory and language tasks (typically considered left hemisphere). No correlations were found between the duration of epilepsy and either the neuropsychological screening or Kinarm assessment. SIGNIFICANCE: Our findings suggest that Kinarm may be a useful tool in screening for neurocognitive impairment in people with TLE. Further development may facilitate an easier and more rapid screening of cognition in people with epilepsy and distinguishing patterns of cognitive impairment.


Assuntos
Disfunção Cognitiva , Epilepsia do Lobo Temporal , Epilepsia , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Cognição , Memória de Curto Prazo , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Testes Neuropsicológicos
19.
J Law Biosci ; 11(1): lsad032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259629

RESUMO

As we approach an era of potentially widespread consumer neurotechnology, scholars and organizations worldwide have started to raise concerns about the data privacy issues these devices will present. Notably absent in these discussions is empirical evidence about how the public perceives that same information. This article presents the results of a nationwide survey on public perceptions of brain data, to inform discussions of law and policy regarding brain data governance. The survey reveals that the public may perceive certain brain data as less sensitive than other 'private' information, like social security numbers, but more sensitive than some 'public' information, like media preferences. The findings also reveal that not all inferences about mental experiences may be perceived as equally sensitive, and perhaps not all data should be treated alike in ethical and policy discussions. An enhanced understanding of public perceptions of brain data could advance the development of ethical and legal norms concerning consumer neurotechnology.

20.
Int J Neurosci ; : 1-8, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38270558

RESUMO

INTRODUCTION: The education and pedagogy have been adopted with the development of technology in order to achieve efficient consequences and the new methods in neuroscience and neurotechnology have influenced the educational systems and the classrooms. A great number of researches have been projected in this field to demonstrate the advantages and desirable effects of neurotechnology in education and the classrooms. These researches are examinable in terms of considering both advantages and disadvantages of technology. OBJECTS: The aim of this study is to demonstrate the advantages and undesirable effects of neurotechnology in education and the classrooms. METHODS: This article surveys the fourteen recent researches about using neurotechnology in education and the classrooms in the framework of critical theory to discuss the adverse and undesired effects of neurotechnology as well as their neglected aspects in education and the classrooms. FINDINGS: The findings illuminate that crucial disadvantages of neurotechnology are neglected in using computerbased tools in education and the classrooms and their side effects on the participants in the process of learning. CONCLUSIONS: The new methods in neuroscience and neurotechnology have influenced the educational systems and the classrooms. A considerable number of researches have been projected in this field that all try to demonstrate the advantages and desirable effects of neurotechnology in education and the classrooms, but they consciously or unconsciously neglect the immoral and unscrupulous effects of such technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA