Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 974
Filtrar
1.
Transgenic Res ; 33(4): 255-266, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981975

RESUMO

The p75NTR neurotrophin receptor has positive and negative roles regulating cell survival in the nervous system. Unambiguous interpretation of p75NTR function in vivo has been complicated, however, by residual expression of alternate forms of p75NTR protein in initial p75NTR knock-out mouse models. As rats are the preferred rodent for studying brain and behaviour, and to simplify interpretation of the knock-out phenotype, we report here the generation of a mutant rat devoid of the p75NTR protein. TALEN-mediated recombination in embryonic stem cells (ESCs) was used to flank exon 2 of p75NTR with Lox P sites and produce transgenic rats carrying either un-recombined floxed p75NTREx2-fl, or recombined, exon-2 deleted p75NTREx2-Δ alleles. Crossing p75NTREx2-fl rats with a Cre-deleter strain efficiently removed exon 2 in vivo. Excision of exon 2 causes a frameshift after p75NTR Gly23 and eliminated p75NTR protein expression. Rats lacking p75NTR were healthy, fertile, and histological analysis did not reveal significant changes in cellular density or overall structure in their brains. p75NTR function is therefore largely dispensable for normal development, growth and basal homeostasis in the rat. However, the availability of constitutive and conditional p75NTREx2-Δ rats provides new opportunities to investigate specific roles of p75NTR upon injury and during tissue repair.


Assuntos
Ratos Transgênicos , Animais , Ratos , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Fertilidade/genética , Feminino , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Masculino , Éxons/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Embrionárias/metabolismo , Receptores de Fatores de Crescimento
2.
Biology (Basel) ; 13(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39056738

RESUMO

Nerve growth factor (NGF) is a neurotrophic peptide largely revealed for its ability to regulate the growth and survival of peripheral sensory, sympathetic, and central cholinergic neurons. The pro-survival and regenerative properties of neurotrophic factors propose a therapeutic potential in a wide range of brain diseases, and NGF, in particular, has appeared as an encouraging potential treatment. In this review, a summary of clinical studies regarding NGF and its therapeutic effects published to date, with a specific interest in the pediatric context, will be attempted. NGF has been studied in neurological disorders such as hypoxic-ischemic encephalopathy, traumatic brain injury, neurobehavioral and neurodevelopmental diseases, congenital malformations, cerebral infections, and in oncological and ocular diseases. The potential of NGF to support neuronal survival, repair, and plasticity in these contexts is highlighted. Emerging therapeutic strategies for NGF delivery, including intranasal administration as well as advanced nanotechnology-based methods, are discussed. These techniques aim to enhance NGF bioavailability and target specificity, optimizing therapeutic outcomes while minimizing systemic side effects. By synthesizing current research, this review underscores the promise and challenges of NGF-based therapies in pediatric neurology, advocating for continued innovation in delivery methods to fully harness NGF's therapeutic potential.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38859788

RESUMO

BACKGROUND: Neurotrophins are essential factors for neural growth and function; they play a crucial role in neurodegenerative diseases where their expression levels are altered. Our previous research has demonstrated changes in synaptic plasticity and neurotrophin expression levels in a pharmacological model of Huntington's disease induced by 3-nitropropionic acid (3-NP). In the 3- NP-induced HD model, corticostriatal Long Term Depression (LTD) was impaired, but neurotrophin-3 (NT-3) restored striatal LTD. This study delves into the NT-3-induced signaling pathways involved in modulating and restoring striatal synaptic plasticity in cerebral slices from 3-NPinduced striatal degeneration in mice in vivo. METHODS: Phospholipase C (PLC), phosphatidylinositol-3-kinase (PI3K), and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways activated by NT-3 were analyzed by means of field electrophysiological recordings in brain slices from control and 3-NP treated in the presence of specific inhibitors of the signaling pathways. RESULTS: Using specific inhibitors, PLC, PI3K, and MEK/ERK signaling pathways contribute to NT3-mediated plasticity modulation in striatal tissue slices recorded from control animals. However, in the neurodegeneration model induced by 3-NP, the recovery of striatal LTD induced by NT-3 was prevented only by the PLC inhibitor. Moreover, the PLC signaling pathway appeared to trigger downstream activation of the endocannabinoid system, evidenced by AM 251, an inhibitor of the CB1 receptor, also hindered NT-3 plasticity recovery. CONCLUSION: Our finding highlights the specific involvement of the PLC pathway in the neuroprotective effects of NT-3 in mitigating synaptic dysfunction under neurodegenerative conditions.

4.
Med Sci (Basel) ; 12(2)2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921685

RESUMO

Hemodialyzed patients have innate immunity activation and adaptive immunity senescence. Diabetes mellitus is a frequent cause for chronic kidney disease and systemic inflammation. We studied the immunological pattern (innate and acquired immunity) and the tissular regeneration capacity in two groups of hemodialyzed patients: one comprised of diabetics and the other of non-diabetics. For inflammation, the following serum markers were determined: interleukin 6 (IL-6), interleukin 1ß (IL-1ß), tumoral necrosis factor α (TNF-α), IL-6 soluble receptor (sIL-6R), NGAL (human neutrophil gelatinase-associated lipocalin), and interleukin 10 (IL-10). Serum tumoral necrosis factor ß (TNF-ß) was determined as a cellular immune response marker. Tissue regeneration capacity was studied using neurotrophin-3 (NT-3) and vascular endothelial growth factor ß (VEGF-ß) serum levels. The results showed important IL-6 and sIL-6R increases in both groups, especially in the diabetic patient group. IL-6 generates trans-signaling at the cellular level through sIL-6R, with proinflammatory and anti-regenerative effects, confirmed through a significant reduction in NT-3 and VEGF-ß. Our results suggest that the high serum level of IL-6 significantly influences IL-1ß, TNF-ß, NT-3, VEGF-ß, and IL-10 behavior. Our study is the first that we know of that investigates NT-3 in this patient category. Moreover, we investigated VEGF-ß and TNF-ß serum behavior, whereas most of the existing data cover only VEGF-α and TNF-α in hemodialyzed patients.


Assuntos
Interleucina-6 , Neurotrofina 3 , Diálise Renal , Humanos , Masculino , Interleucina-6/sangue , Feminino , Pessoa de Meia-Idade , Idoso , Fator de Necrose Tumoral alfa/sangue , Receptores de Interleucina-6 , Diabetes Mellitus , Lipocalina-2/sangue , Interleucina-1beta/sangue , Regeneração , Biomarcadores/sangue , Imunidade Inata , Inflamação , Adulto
5.
In Silico Pharmacol ; 12(1): 56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867766

RESUMO

Ameloblastoma is a non-cancerous but aggressive oral tumor emerging from odontogenic epithelial tissue involved during odontogenesis. Since there is lack in unravelling the complete molecular pathogenesis of ameloblastoma, chemotherapy is less attempted and a lot of disagreement over the optimal treatment option. Hence, till date, wide surgical resection is considered to be the reliable treatment for ameloblastoma. The Neurotrophin Signaling pathway plays an important role in neuron signaling and it is closely related with the MAPK pathway, which on the other hand regulated cell differentiation, apoptosis, proliferation, plasticity and survival. Protein- Protein Interaction analysis was analysed with STRING tool using WNL value, identified that CTNNB1, HRAS, NGFR, NGFR, and SORT1 having high interacting with BDNF, NT4, p75NTR, NGF, and NT3. The results of ontology analysis revealed that Neurotrophin signaling pathway is associated with Cell surface receptor signaling pathway, regulation of cell differentiation, regulation of development process, EGFR tyrosine kinase inhibitor resistance, MAPK signaling pathway, PI3K-Akt signaling pathway and Ras signaling pathway leading to pathogenesis involving genes. Further, clustering coefficient values of proteins BDNF, NT4, p75NTR, NGF & NT3 were identified as 0.627, 0.708, 0.367, 0.644 & 0.415. The results of molecular docking studies revealed among the selected ligands Methyl-É£-oresellinate, N-(4-Hydroxy-phenyl)-2-phenyl-N-phenylacetyl-acetamide, Atranorin and Oresellinate exhibited high binding affinity with selected protein. The key genes involved in Neurotrophin signaling pathway leading to ameloblastoma pathogenesis is revealed, which are closely associated with cell differentiation, cell proliferation, pro-apoptosis, and pro-survival regulations. Further it can be concluded that Neurotrophin signaling pathway could be one of the promising pathway to tailor the targeted drug therapy for Ameloblastoma treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00223-2.

6.
Neuroendocrinology ; : 1-13, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885623

RESUMO

INTRODUCTION: Cancer stem cells (CSCs) shape the tumor microenvironment via neuroendocrine signaling and orchestrate drug resistance and metastasis. Cytokine antibody array demonstrated the upregulation of neurotrophin-3 (NT-3) in lung CSCs. This study aims to dissect the role of NT-3 in lung CSCs during tumor innervation. METHODS: Western blotting, quantitative reverse transcription-PCR, and flow cytometry were used to determine the expression of the NT-3 axis in lung CSCs. NT-3-knockdown and NT-3-overexpressed cells were derived lung CSCs, followed by examining the stemness gene expression, tumorsphere formation, transwell migration and invasion, drug resistance, soft agar colony formation, and in vivo tumorigenicity. Human lung cancer tissue microarray and bioinformatic databases were used to investigate the clinical relevance of NT-3 in lung cancer. RESULTS: NT-3 and its receptor tropomyosin receptor kinase C (TrkC) were augmented in lung tumorspheres. NT-3 silencing (shNT-3) suppressed the migration and anchorage-independent growth of lung cancer cells. Further, shNT-3 abolished the sphere-forming capability, chemo-drug resistance, invasion, and in vivo tumorigenicity of lung tumorspheres with a decreased expression of CSC markers. Conversely, NT-3 overexpression promoted migration and anchorage-independent growth and fueled tumorsphere formation by upregulating the expression of CSC markers. Lung cancer tissue microarray analysis revealed that NT-3 increased in patients with advanced-stage, lymphatic metastasis and positively correlated with Sox2 expression. Bioinformatic databases confirmed a co-expression of NT-3/TrkC-axis and demonstrated that NT-3, NT-3/TrkC, NT-3/Sox2, and NT-3/CD133 worsen the survival of lung cancer patients. CONCLUSION: NT-3 conferred the stemness features in lung cancer during tumor innervation, which suggests that NT-3-targeting is feasible in eradicating lung CSCs.

7.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891978

RESUMO

Binge alcohol consumption during adolescence can produce lasting deficits in learning and memory while also increasing the susceptibility to substance use disorders. The adolescent intermittent ethanol (AIE) rodent model mimics human adolescent binge drinking and has identified the nucleus basalis magnocellularis (NbM) as a key site of pathology. The NbM is a critical regulator of prefrontal cortical (PFC) cholinergic function and attention. The cholinergic phenotype is controlled pro/mature neurotrophin receptor activation. We sought to determine if p75NTR activity contributes to the loss of cholinergic phenotype in AIE by using a p75NTR modulator (LM11A-31) to inhibit prodegenerative signaling during ethanol exposure. Male and female rats underwent 5 g/kg ethanol (AIE) or water (CON) exposure following 2-day-on 2-day-off cycles from postnatal day 25-57. A subset of these groups also received a protective dose of LM11A-31 (50 mg/kg) during adolescence. Rats were trained on a sustained attention task (SAT) and behaviorally relevant acetylcholine (ACh) activity was recorded in the PFC with a fluorescent indicator (AChGRAB 3.0). AIE produced learning deficits on the SAT, which were spared with LM11A-31. In addition, PFC ACh activity was blunted by AIE, which LM11A-31 corrected. Investigation of NbM ChAT+ and TrkA+ neuronal expression found that AIE led to a reduction of ChAT+TrkA+ neurons, which again LM11A-31 protected. Taken together, these findings demonstrate the p75NTR activity during AIE treatment is a key regulator of cholinergic degeneration.


Assuntos
Acetilcolina , Neurônios Colinérgicos , Etanol , Córtex Pré-Frontal , Animais , Feminino , Masculino , Ratos , Acetilcolina/metabolismo , Atrofia , Comportamento Animal/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Modelos Animais de Doenças , Etanol/toxicidade , Proteínas do Tecido Nervoso , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/metabolismo
8.
J Clin Biochem Nutr ; 74(3): 199-206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799139

RESUMO

Photoreceptor degeneration decreases light sensitivity and leads to vision loss and various retinal diseases. Neurotrophin-3, originating from Müller glial cells in the retina, plays a key role in protecting photoreceptors from damage induced by light or hypoxia. This neuroprotective approach is important because there are no established methods to regenerate lost photoreceptors. Dietary supplements are one of the useful methods for improving eye health. Eurycoma longifolia (E. longifolia) Jack, which is native to the tropical forest of Malaysia and other Southeast Asian countries, exhibits several medicinal properties. In the present study, we demonstrated that the water extract of E. longifolia roots enhanced neurotrophin-3 gene expression in primary rat Müller cells. Using a stepwise bioassay-guided fractionation and purification of E. longifolia root extracts, we isolated the active compound underlying neurotrophin-3 gene-enhancing activities. Mass spectrometry and nuclear magnetic resonance spectral data identified the compound as eurycomanone. This study provides evidence for the efficacy of E. longifolia and eurycomanone in enhancing neurotrophin-3 expression in Müller cells in vitro. Although the biological significance of this effect and its underlying mechanism remain to be elucidated, this study suggests that E. longifolia may be promising for improving eye health and must be further investigated.

9.
Artif Cells Nanomed Biotechnol ; 52(1): 278-290, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38733373

RESUMO

Type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), obesity (OB) and hypertension (HT) are categorized as metabolic disorders (MDs), which develop independently without distinct borders. Herein, we examined the gut microbiota (GM) and Saururus chinensis (SC) to confirm their therapeutic effects via integrated pharmacology. The overlapping targets from the four diseases were determined to be key protein coding genes. The protein-protein interaction (PPI) networks, and the SC, GM, signalling pathway, target and metabolite (SGSTM) networks were analysed via RPackage. Additionally, molecular docking tests (MDTs) and density functional theory (DFT) analysis were conducted to determine the affinity and stability of the conformer(s). TNF was the main target in the PPI analysis, and equol derived from Lactobacillus paracasei JS1 was the most effective agent for the formation of the TNF complex. The SC agonism (PPAR signalling pathway), and antagonism (neurotrophin signalling pathway) by SC were identified as agonistic bioactives (aromadendrane, stigmasta-5,22-dien-3-ol, 3,6,6-trimethyl-3,4,5,7,8,9-hexahydro-1H-2-benzoxepine, 4α-5α-epoxycholestane and kinic acid), and antagonistic bioactives (STK734327 and piclamilast), respectively, via MDT. Finally, STK734327-MAPK1 was the most favourable conformer according to DFT. Overall, the seven bioactives from SC and equol that can be produced by Lactobacillus paracasei JS1 can exert synergistic effects on these four diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipertensão , Hepatopatia Gordurosa não Alcoólica , Obesidade , Saururaceae , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/microbiologia , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipertensão/microbiologia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Animais , Saururaceae/química , Saururaceae/metabolismo , Simulação de Acoplamento Molecular , Humanos , Mapas de Interação de Proteínas
10.
Regen Biomater ; 11: rbae039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746707

RESUMO

Decellularized extracellular matrix hydrogel, especially that derived from spinal cord (DSCM hydrogel), has been actively considered as a functional biomaterial for remodeling the extracellular matrix of the native tissue, due to its unique characteristics in constructing pro-regenerative microenvironment for neural stem cells (NSCs). Furthermore, DSCM hydrogel can provide multiple binding domains to growth factors and drugs. Therefore, both exogenous neurotrophic factors and anti-inflammatory drugs are highly desired to be incorporated into DSCM hydrogel, which may synergistically modulate the complex microenvironment at the lesion site after spinal cord injury (SCI). Herein, neurotrophin-3 (NT-3) and curcumin (Cur) were integrated into DSCM hydrogel for SCI therapy. Due to different affinities to the DSCM hydrogel, NT-3 underwent a controlled release manner, while curcumin released explosively within the first 24 h, followed by rather sustained but slower release. The integration of both NT-3 and curcumin significantly enhanced NSCs proliferation and their neuronal differentiation. Meanwhile, the release of curcumin promoted macrophages polarization into anti-inflammatory subtypes, which further facilitated NSCs differentiation into neurons. The in situ injected DSCM + NT3 + Cur hydrogel exerted superior capability in alleviating the inflammatory responses in rat contused spinal cord. Compared to DSCM hydrogel alone, DSCM + NT3 + Cur hydrogel more significantly promoted the recruitment of NSCs and their neuronal differentiation at the lesion site. These outcomes favored functional recovery, as evidenced by the improved hind limb movement. Overall, the bioactive DSCM hydrogel can serve as a multifunctional carrier for cooperatively release of growth factors and drugs, which significantly benefits microenvironment regulation and nerve regeneration after SCI.

11.
Biology (Basel) ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38785785

RESUMO

Stress is an important risk factor for the onset of anxiety and depression. The ability to cope with stressful events varies among different subjects, probably depending on different genetic variants, sex and previous life experiences. The Val66Met variant of Brain-Derived Neurotrophic Factor (BDNF), which impairs the activity-dependent secretion of BDNF, has been associated with increased susceptibility to the development of various neuropsychiatric disorders. Adult male and female wild-type Val/Val (BDNFV/V) and heterozygous Val/Met (BDNFV/M) mice were exposed to two sessions of forced swimming stress (FSS) per day for two consecutive days. The mice were behaviorally tested 1 day (short-term effect) or 11 days (long-term effect) after the last stress session. Protein and mRNA levels were measured in the hippocampus 16 days after the end of stress exposure. Stressed mice showed a higher anxiety-like phenotype compared to non-stressed mice, regardless of the sex and genotype, when analyzed following the short period of stress. In the prolonged period, anxiety-like behavior persisted only in male BDNFV/M mice (p < 0.0001). Interestingly, recovery in male BDNFV/V mice was accompanied by an increase in pCREB (p < 0.001) and Bdnf4 (p < 0.01) transcript and a decrease in HDAC1 (p < 0.05) and Dnmt3a (p = 0.01) in the hippocampus. Overall, our results show that male and female BDNF Val66Met knock-in mice can recover from subchronic stress in different ways.

12.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727956

RESUMO

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurotrofina 3 , Bulbo Olfatório , Remielinização , Animais , Ratos , Neurotrofina 3/metabolismo , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Remielinização/fisiologia , Bulbo Olfatório/citologia , Proliferação de Células , Medula Espinal/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Células Cultivadas , Movimento Celular , Cistos/patologia , Feminino , Cistos do Sistema Nervoso Central/cirurgia , Cistos do Sistema Nervoso Central/patologia
13.
Behav Brain Res ; 469: 115046, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38761859

RESUMO

BACKGROUND: This systematic review aims to comprehensively explore the impact of psychostimulant substances on neurotrophic and inflammatory pathways, including brain-derived neurotrophic factor (BDNF), pro-BDNF, cortisol, dehydroepiandrosterone sulfate (DHEAS), thiobarbituric acid reactive substances (TBARS), interleukins, and the role of genetic factors. The study seeks to address existing gaps in the literature by providing a thorough evaluation of neurotrophic and inflammatory system alterations associated with different stages of psychostimulant dependence for a more nuanced understanding of substance use disorder (SUD) neurobiology. METHODS: A systematic review was conducted in PubMed, Scopus, and Web of Science databases following the PRISMA guidelines. The research encompasses 50 studies with a participant pool totaling 6792 individuals using psychostimulant substances. RESULTS: Key findings include diverse impacts of cocaine on BDNF levels, mainly consisting of their significant increase during withdrawal. In contrast, NGF showed an opposite behavior, reducing during withdrawal. Cortisol and DHEAS levels exhibited relevant increases after psychostimulant use, while TBARS showed conflicting results. Genetic investigations predominantly focused on the Val66Met polymorphism of the BDNF gene, revealing associations with susceptibility to stimulant addiction. CONCLUSIONS: Neurotrophins and inflammatory molecules play a significant role in the pathophysiological mechanisms following psychostimulant use. A better understanding of their complex interplay could aid clinicians in identifying biomarkers of different disease stages. Moreover, clinical interventions designed to interfere with neurotrophic and inflammatory pathways could possibly lead to craving-modulatory strategies and reduce pathological neuronal and systemic consequences of psychostimulant use.


Assuntos
Biomarcadores , Estimulantes do Sistema Nervoso Central , Fatores de Crescimento Neural , Estresse Oxidativo , Transtornos Relacionados ao Uso de Substâncias , Humanos , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Hidrocortisona/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Transtornos Relacionados ao Uso de Substâncias/genética
14.
Psychoneuroendocrinology ; 165: 107045, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636352

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) has been implicated in the therapeutic action of antidepressants and possibly in the pathophysiology of Major Depressive Disorder (MDD). Clinical studies of peripheral blood levels of BDNF in MDD have provided conflicting results, and there are also conflicting reports regarding the predictive value of peripheral BDNF levels for antidepressant treatment response. The present study investigated the association between serum BDNF levels, the BDNF Val66Met polymorphism (rs6265), clinical characteristics and SSRI treatment response. METHODS: This open-label clinical trial included 99 physically healthy, unmedicated MDD participants and 70 healthy controls. Following a baseline assessment, 53 of the MDD participants completed an eight-week, open-label course of SSRI antidepressant treatment. Serum BDNF levels and Hamilton Rating Scale for Depression (HDRS) ratings were examined at baseline and after eight weeks of treatment. Antidepressant response was defined as a decrease in HDRS ratings of > 50% from baseline to the end-of-treatment. Finally, serum BDNF levels and SSRI treatment response were compared between MDD participants who were heterozygous or homozygous for the Met allele ("Met-carriers") and individuals homozygous for the Val allele. RESULTS: Serum BDNF levels at baseline were significantly higher in the unmedicated MDD participants compared to healthy controls (15.90 ng/ml vs 13.75 ng/ml, t (167) = -2.041, p = 0.043). In a post-hoc analysis, this difference was seen in the female but not male participants (16.85 ng/ml vs 14.06 ng/ml, t (91) = -2.067, p = 0.042; 14.86 ng/ml vs 13.31 ng/ml, t (74) = -0.923, p = 0.359). Baseline serum BDNF levels were not associated with treatment responder status or with absolute change in depression ratings over the course of 8-week SSRI treatment (p = 0.599). In both Responders and Non-responders, no significant changes in serum BDNF levels were found over the 8-week period of SSRI-treatment (16.32 ng/ml vs 16.23 ng/ml, t (18) = 0.060, p = 0.953; 16.04 ng/ml vs 15.61 ng/ml, t (29) = 0.438, p = 0.665, respectively). Further, no differences were found in serum BDNF levels prior to treatment between MDD Met-carriers and MDD Val/Val homozygotes (15.32 ng/ml vs 16.36 ng/ml, t (85) = 0.747, p = 0.457), and no differences were found in post-treatment serum BDNF (F1,42= 0.031, p = 0.862). However, MDD Val/Val homozygotes showed significantly greater antidepressant responses at week 8 than did MDD Met-carriers (F1,46 = 4.366, p = 0.043). CONCLUSION: Our results do not support sufficient reliability of using peripheral BDNF to characterize depression or to predict antidepressant response in clinical use. The role of sex in moderating BDNF differences in depression, and the role of BDNF gene polymorphisms in predicting antidepressant response, remain to be further investigated. We conclude that, while central nervous system BDNF is likely involved in antidepressant efficacy and in aspects of MDD pathophysiology, its reflection in serum BDNF levels is of limited diagnostic or prognostic utility.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Polimorfismo de Nucleotídeo Único , Inibidores Seletivos de Recaptação de Serotonina , Humanos , Fator Neurotrófico Derivado do Encéfalo/sangue , Fator Neurotrófico Derivado do Encéfalo/genética , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/sangue , Masculino , Feminino , Adulto , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Resultado do Tratamento , Antidepressivos/uso terapêutico , Alelos , Genótipo
15.
Biol Sex Differ ; 15(1): 30, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566248

RESUMO

BACKGROUND: Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS: We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS: Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS: OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.


Assuntos
Receptor alfa de Estrogênio , Fármacos Neuroprotetores , Criança , Feminino , Animais , Masculino , Camundongos , Humanos , Receptor alfa de Estrogênio/metabolismo , Neuroproteção , Caracteres Sexuais , Testosterona/farmacologia , Testosterona/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo , Isquemia , Hipóxia/metabolismo , RNA Mensageiro/metabolismo
16.
Eur J Obstet Gynecol Reprod Biol ; 297: 182-186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677095

RESUMO

OBJECTIVE: In this study, we aimed to evaluate the effect of maternal iron deficiency anemia on the umbilical cord level of brain-derived neurotrophic factor (BDNF), which plays a very important role in the central nervous system. METHODS: Our research was planned as a quantitative, prospective, and analytical type of study. A total of 90 volunteers, term, singleton pregnant hospitalized in the Health Sciences University Ümraniye Training and Research Hospital Gynecology and Obstetrics Clinic between September 2021 and August 2022 were included in this study. While 45 of these pregnants were pregnant women with iron deficiency anemia (hemoglobin ≤ 110 g/L and serum ferritin level ≤ 12 µg/L), 45 cases were in the control group without iron deficiency anemia (hemoglobin > 110 g/L, serum ferritin > 12 µg/L). When pregnant were admitted to the hospital, blood samples were taken to analyze hemoglobin, mean cell volume (MCV), iron, unsaturated iron binding capacity, total iron binding capacity, serum ferritin, transferrin, and CRP levels. Also, we noted the maternal age, gravida, parity, birth weight, head circumference, type of birth, 1. minute Apgar score, and 5. minute Apgar score. During the delivery; after the umbilical cord had been clamped and cut, we took 5 cc of umbilical cord blood. Then, we put it in the serum-separating laboratory tubes. After we centrifuged these blood samples, we put the serum parts in the Eppendorf tubes to be stored at -80 degrees Celsius. At the end of the study, we calculated the level of BDNF using special human brain-derived neurotrophic factor ELISA kits. The umbilical cord BDNF levels of the maternal iron deficiency anemia group and the control group were compared statistically. RESULTS: When we evaluated the fetal umbilical cord BDNF values of 90 participants, the median value BDNF in the babies of 45 anemic mothers was 3.16 (IQR 0.73), and the median BDNF value of the babies of 45 healthy mothers was 5.37 (IQR 1.02). We found a statistical difference between BDNF and hemoglobin, hematocrit, MCV, and iron values between these two groups. CONCLUSION: In conclusion, the BDNF value of the babies of healthy individuals is higher than that of anemic individuals. Our study showed that the amount of BDNF in the umbilical cord blood was significantly affected by maternal iron deficiency anemia.


Assuntos
Anemia Ferropriva , Fator Neurotrófico Derivado do Encéfalo , Sangue Fetal , Humanos , Feminino , Gravidez , Sangue Fetal/metabolismo , Sangue Fetal/química , Fator Neurotrófico Derivado do Encéfalo/sangue , Adulto , Anemia Ferropriva/sangue , Estudos Prospectivos , Complicações Hematológicas na Gravidez/sangue , Ferritinas/sangue , Estudos de Casos e Controles , Hemoglobinas/análise , Hemoglobinas/metabolismo , Cordão Umbilical , Recém-Nascido
17.
Proc Natl Acad Sci U S A ; 121(19): e2400903121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683992

RESUMO

The IL-17 pathway displays remarkably diverse functional modes between different subphyla, classes, and even orders, yet its driving factors remains elusive. Here, we demonstrate that the IL-17 pathway originated through domain shuffling between a Toll-like receptor (TLR)/IL-1R pathway and a neurotrophin-RTK (receptor-tyrosine-kinase) pathway (a Trunk-Torso pathway). Unlike other new pathways that evolve independently, the IL-17 pathway remains intertwined with its donor pathways throughout later evolution. This intertwining not only influenced the gains and losses of domains and components in the pathway but also drove the diversification of the pathway's functional modes among animal lineages. For instance, we reveal that the crustacean female sex hormone, a neurotrophin inducing sex differentiation, could interact with IL-17Rs and thus be classified as true IL-17s. Additionally, the insect prothoracicotropic hormone, a neurotrophin initiating ecdysis in Drosophila by binding to Torso, could bind to IL-17Rs in other insects. Furthermore, IL-17R and TLR/IL-1R pathways maintain crosstalk in amphioxus and zebrafish. Moreover, the loss of the Death domain in the pathway adaptor connection to IκB kinase and stress-activated protein kinase (CIKSs) dramatically reduced their abilities to activate nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) in amphioxus and zebrafish. Reinstating this Death domain not only enhanced NF-κB/AP-1 activation but also strengthened anti-bacterial immunity in zebrafish larvae. This could explain why the mammalian IL-17 pathway, whose CIKS also lacks Death, is considered a weak signaling activator, relying on synergies with other pathways. Our findings provide insights into the functional diversity of the IL-17 pathway and unveil evolutionary principles that could govern the pathway and be used to redesign and manipulate it.


Assuntos
Interleucina-17 , Transdução de Sinais , Receptores Toll-Like , Animais , Interleucina-17/metabolismo , Receptores Toll-Like/metabolismo , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Evolução Molecular , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética
18.
Addict Biol ; 29(4): e13392, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38564607

RESUMO

Suicide attempts (SA) are prevalent in substance use disorders (SUD). Epigenetic mechanisms may play a pivotal role in the molecular mechanisms of environmental effects eliciting suicidal behaviour in this population. Hypothalamic-pituitary-adrenal axis (HPA), oxytocin and neurotrophin pathways have been consistently involved in SA, yet , their interplay with childhood adversity remains unclear, particularly in SUD. In 24 outpatients with SUDs, we examined the relation between three parental dysfunctional styles and history of SA with methylation of 32 genes from these pathways, eventually analysing 823 methylation sites. Extensive phenotypic characterization was obtained using a semi-structured interview. Parental style was patient-reported using the Measure of Parental Style (MOPS) questionnaire, analysed with and without imputation of missing items. Linear regressions were performed to adjust for possible confounders, followed by multiple testing correction. We describe both differentially methylated probes (DMPs) and regions (DMRs) for each set of analyses (with and without imputation of MOPS items). Without imputation, five DMRs in OXTR, CRH and NTF3 significantly interacted with MOPS father abuse to increase the risk for lifetime SA, thus covering the three pathways. After imputation of missing MOPS items, two other DMPs from FKBP5 and SOCS3 significantly interacted with each of the three father styles to increase the risk for SA. Although our findings must be interpreted with caution due to small sample size, they suggest implications of stress reactivity genes in the suicidal risk of SUD patients and highlight the significance of father dysfunction as a potential marker of childhood adversity in SUD patients.


Assuntos
Transtornos Relacionados ao Uso de Substâncias , Tentativa de Suicídio , Humanos , Criança , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Pais , Transtornos Relacionados ao Uso de Substâncias/genética , Epigênese Genética
19.
EMBO Rep ; 25(5): 2375-2390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594391

RESUMO

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.


Assuntos
Quimiocina CCL2 , Gânglios Espinais , Neuralgia , Neurônios , Neurotrofina 3 , Paclitaxel , Receptor trkC , Animais , Feminino , Masculino , Camundongos , Antineoplásicos/efeitos adversos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Neuralgia/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Paclitaxel/efeitos adversos , Paclitaxel/farmacologia , Receptor trkC/metabolismo , Receptor trkC/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo
20.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38463995

RESUMO

Activation of the basal forebrain leads to increases in the expression of the nerve growth factor receptor, Tropomyosin receptor kinase A (TrkA) and decreases in expression of the beta amyloid cleavage enzyme 1 (BACE1) in the cerebral cortex of both sexes of 5xFAD mice. The studies described in this report were designed to determine if these changes were dependent on acetylcholine receptors. Mice were stimulated unilaterally in the basal forebrain for two weeks. Animals were administered a cholinergic antagonist, or saline, 30 minutes prior to stimulation. Animals administered saline exhibited significant increases in TrkA expression and decreases in BACE1 in the stimulated hemisphere relative to the unstimulated. While both nonselective nicotinic and muscarinic acetylcholine receptor blockade attenuated the BACE1 decline, only the nicotinic receptor antagonism blocked the TrkA increase. Next, we applied selective nicotinic antagonists, and the α7 antagonist blocked the TrkA increases, but the α4ß2 antagonist did not. BACE1 declines were not blocked by either intervention. Mice with a loxP conditional knockout of the gene for the α7 nicotinic receptor were also employed in these studies. Animals were either stimulated bilaterally for two weeks, or left unstimulated. With or without stimulation, the expression of TrkA receptors was lower in the cortical region with the α7 nicotinic receptor knockdown. We thus conclude that α7 nicotinic receptor activation is necessary for normal expression of TrkA and increases caused by basal forebrain activation, while BACE1 declines caused by stimulation have dependency on a broader array of receptor subtypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA