Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
J Environ Sci (China) ; 150: 134-148, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306390

RESUMO

Biological nitrogen fixation (BNF) is a crucial process that provides bioavailable nitrogen and supports primary production in freshwater lake ecosystems. However, the characteristics of diazotrophic community and nitrogenase activity in freshwater lake sediments remain poorly understood. Here, we investigated the diazotrophic communities and nitrogenase activities in the sediments of three large river-connected freshwater lakes in eastern China using 15N-isotope tracing and nifH sequencing. The sediments in these lakes contained diverse nitrogenase genes that were phylogenetically grouped into Clusters I and III. The diazotrophic communities in the sediments were dominated by stochastic processes in Hongze Lake and Taihu Lake, which had heterogeneous habitats and shallower water depths, while in Poyang Lake, which had deeper water and a shorter hydraulic retention time, the assembly of the diazotrophic community in the sediments was dominated by homogeneous selection processes. Temperature and water depth were also found the key environmental factors affecting the sediment diazotrophic communities. Sediment nitrogenase activities varied in the three lakes and within distinct regions of an individual lake, ranging from 0 to 14.58 nmol/(kg·hr). Nitrogenase activity was significantly correlated with ferric iron, total phosphorus, and organic matter contents. Our results suggested that freshwater lake sediment contain high diversity of nitrogen-fixing microorganisms with potential metabolic diversity, and the community assembly patterns and nitrogenase activities varied with the lake habitat.


Assuntos
Lagos , Fixação de Nitrogênio , Nitrogenase , Lagos/microbiologia , China , Nitrogenase/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Rios/microbiologia , Ecossistema , Filogenia
2.
Microb Ecol ; 87(1): 106, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141097

RESUMO

Seagrass meadows play pivotal roles in coastal biochemical cycles, with nitrogen fixation being a well-established process associated with living seagrass. Here, we tested the hypothesis that nitrogen fixation is also associated with seagrass debris in Danish coastal waters. We conducted a 52-day in situ experiment to investigate nitrogen fixation (proxied by acetylene reduction) and dynamics of the microbial community (16S rRNA gene amplicon sequencing) and the nitrogen fixing community (nifH DNA/RNA amplicon sequencing) associated with decomposing Zostera marina leaves. The leaves harboured distinct microbial communities, including distinct nitrogen fixers, relative to the surrounding seawater and sediment throughout the experiment. Nitrogen fixation rates were measurable on most days, but highest on days 3 (dark, 334.8 nmol N g-1 dw h-1) and 15 (light, 194.6 nmol N g-1 dw h-1). Nitrogen fixation rates were not correlated with the concentration of inorganic nutrients in the surrounding seawater or with carbon:nitrogen ratios in the leaves. The composition of nitrogen fixers shifted from cyanobacterial Sphaerospermopsis to heterotrophic genera like Desulfopila over the decomposition period. On the days with highest fixation, nifH RNA gene transcripts were mainly accounted for by cyanobacteria, in particular by Sphaerospermopsis and an unknown taxon (order Nostocales), alongside Proteobacteria. Our study shows that seagrass debris in temperate coastal waters harbours substantial nitrogen fixation carried out by cyanobacteria and heterotrophic bacteria that are distinct relative to the surrounding seawater and sediments. This suggests that seagrass debris constitutes a selective environment where degradation is affected by the import of nitrogen via nitrogen fixation.


Assuntos
Microbiota , Fixação de Nitrogênio , Folhas de Planta , Água do Mar , Zosteraceae , Folhas de Planta/microbiologia , Água do Mar/microbiologia , Água do Mar/química , Zosteraceae/microbiologia , Zosteraceae/metabolismo , Nitrogênio/metabolismo , Nitrogênio/análise , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Dinamarca , Cianobactérias/metabolismo , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/isolamento & purificação
3.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38925647

RESUMO

AIM: Bacteria that promote plant growth, such as diazotrophs, are valuable tools for achieving a more sustainable production of important non-legume crops like rice. Different strategies have been used to discover new bacteria capable of promoting plant growth. This work evaluated the contribution of soil diazotrophs to the endophytic communities established in the roots of rice seedlings cultivated on seven representative soils from Uruguay. METHODS AND RESULTS: The soils were classified into two groups according to the C and clay content. qPCR, terminal restriction fragment length polymorphism (T-RFLP), and 454-pyrosequencing of the nifH gene were used for analyzing diazotrophs in soil and plantlets' roots grown from seeds of the same genotype for 25 days under controlled conditions. A similar nifH abundance was found among the seven soils, roots, or leaves. The distribution of diazotrophs was more uneven in roots than in soils, with dominance indices significantly higher than in soils (nifH T-RFLP). Dominant soils' diazotrophs were mainly affiliated to Alphaproteobacteria and Planctomycetota. Conversely, Alpha, Beta, Gammaproteobacteria, and Bacillota were predominant in different roots, though undetectable in soils. Almost no nifH sequences were shared between soils and roots. CONCLUSIONS: Root endophytic diazotrophs comprised a broader taxonomic range of microorganisms than diazotrophs found in soils from which the plantlets were grown and showed strong colonization patterns.


Assuntos
Endófitos , Oryza , Raízes de Plantas , Microbiologia do Solo , Solo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/classificação , Solo/química , Polimorfismo de Fragmento de Restrição , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Fixação de Nitrogênio , Oxirredutases/genética
4.
Ying Yong Sheng Tai Xue Bao ; 35(4): 917-925, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884226

RESUMO

Biological nitrogen (N) fixation is an important source of N in terrestrial ecosystems, but the response of soil microbial N fixation rate to N deposition in different forest ecosystems still remains uncertain. We conducted a field N addition experiment to simulate atmosphere N deposition in subtropical Pinus taiwanensis and Castanopsis faberi forests. We set up three levels of nitrogen addition using urea as the N source: 0 (control), 40 (low N), and 80 g N·hm-2·a-1(high N) to examine the chemical properties, microbial biomass C, enzyme activities, and nifH gene copies of top soils (0-10 cm). We also measured the microbial N fixation rate using the 15N labeling method. Results showed that N addition significantly reduced the soil microbial N fixation rate in the P. taiwanensis and C. faberi forests by 29%-33% and 10%-18%, respectively. Nitrogen addition significantly reduced N-acquiring enzyme (i.e., ß-1, 4-N-acetylglucosaminidase) activity and nifH gene copies in both forest soils. There was a significant positive correlation between the microbial N fixation rate and soil dissolved organic C content in the P. taiwanensis forest, but a significant negative relationship between the rate of soil microbial nitrogen fixation and NH4+-N content in the C. faberi forest. Overall, soil microbial N fixation function in the P. taiwanensis forest was more sensitive to N addition than that in the C. faberi forest, and the factors affecting microbial N fixation varied between the two forest soils. The study could provide insights into the effects of N addition on biological N fixation in forest ecosystems, and a theoretical basis for forest management.


Assuntos
Florestas , Fixação de Nitrogênio , Nitrogênio , Pinus , Microbiologia do Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Solo/química , Fagaceae/crescimento & desenvolvimento , China , Clima Tropical
5.
Sci Total Environ ; 932: 173061, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723970

RESUMO

Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha-1. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.


Assuntos
Arachis , Carvão Vegetal , Fixação de Nitrogênio , Raízes de Plantas , Solo , Arachis/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Fertilizantes , Esterco
6.
J Exp Bot ; 75(11): 3643-3662, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38531677

RESUMO

All non-Mimosoid nodulated genera in the legume subfamily Caesalpinioideae confine their rhizobial symbionts within cell wall-bound 'fixation threads' (FTs). The exception is the large genus Chamaecrista in which shrubs and subshrubs house their rhizobial bacteroids more intimately within symbiosomes, whereas large trees have FTs. This study aimed to unravel the evolutionary relationships between Chamaecrista growth habit, habitat, nodule bacteroid type, and rhizobial genotype. The growth habit, bacteroid anatomy, and rhizobial symbionts of 30 nodulated Chamaecrista species native to different biomes in the Brazilian state of Bahia, a major centre of diversity for the genus, was plotted onto an ITS-trnL-F-derived phylogeny of Chamaecrista. The bacteroids from most of the Chamaecrista species examined were enclosed in symbiosomes (SYM-type nodules), but those in arborescent species in the section Apoucouita, at the base of the genus, were enclosed in cell wall material containing homogalacturonan (HG) and cellulose (FT-type nodules). Most symbionts were Bradyrhizobium genotypes grouped according to the growth habits of their hosts, but the tree, C. eitenorum, was nodulated by Paraburkholderia. Chamaecrista has a range of growth habits that allow it to occupy several different biomes and to co-evolve with a wide range of (mainly) bradyrhizobial symbionts. FTs represent a less intimate symbiosis linked with nodulation losses, so the evolution of SYM-type nodules by most Chamaecrista species may have (i) aided the genus-wide retention of nodulation, and (ii) assisted in its rapid speciation and radiation out of the rainforest into more diverse and challenging habitats.


Assuntos
Chamaecrista , Filogenia , Floresta Úmida , Simbiose , Chamaecrista/fisiologia , Chamaecrista/genética , Chamaecrista/crescimento & desenvolvimento , Brasil , Ecossistema , Rhizobium/fisiologia , Nodulação/fisiologia , Evolução Biológica , Fixação de Nitrogênio
7.
Ying Yong Sheng Tai Xue Bao ; 35(1): 31-40, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511437

RESUMO

To determine the diversity of nitrogen-fixing and carbon-fixing microbial groups in aeolian sandy soil and the effects of sand-fixation plantation type on the structures of two microbial groups in the Horqin Sandy Land, we selected six representative sand-fixation vegetations with the same age, including Caragana microphylla, Artemisia halodendron, Salix gordejevii, Hedysarum fruticosum, Populus simonii, and Pinus sylvestris var. mongolica as well as their adjacent natural Ulmus pumila open forest as test objects to investigate the diversities and structures of nifH- and cbbL-carrying microbial communities in soil by high-throughput sequencing technique. The results showed that vegetation type significantly affected soil physical and chemical properties, microbiological activities, diversities and the main compositions of nitrogen-fixing and carbon-fixing microbial communities. The diversity of soil nitrogen-fixing microbial communities under S. gordejevii and P. simonii plantations and that of carbon-fixing microbial communities under P. sylvestris var. mongolica and P. simonii plantations were significantly higher than those of other plantations. Skermanella, Bradyrhizobium, Azospirillum, and Azohydromonas were dominant nitrogen-fixation genera, with the average relative abundance of 22.3%, 21.5%, 20.8%, and 17.8%, respectively. Soil carbon-fixation microbial communities were dominated by Pseudonocardia, Bradyrhizobium, Cupriavidus, and Mesorhizobium, with relative abundance of 22.4%, 18.5%, 10.5%, and 6.0%, respectively. Soil nitrogen-fixing microbial community under C. mirophylla plantation and carbon-fixing communities under S. gordejevii and P. simonii plantations were very close to those of natural U. pumila open forest. Soil organic matter, NH4+-N, and total phosphorus were the direct determining factors for nitrogen-fixing microbial community, while pH, soil moisture, and available phosphorus were main factors influencing carbon-fixing microbial community. These observations potentially provide the scienti-fic foundations for evaluating the ecological benefits of revegetation practice in sandy lands.


Assuntos
Microbiota , Solo , Solo/química , Areia , China , Carbono/análise , Nitrogênio/análise , Microbiologia do Solo , Fósforo
8.
Environ Res ; 250: 118469, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354884

RESUMO

Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.


Assuntos
Antozoários , Archaea , Bactérias , Antozoários/microbiologia , Antozoários/fisiologia , Animais , Archaea/genética , Archaea/fisiologia , Bactérias/genética , Bactérias/classificação , Resposta ao Choque Térmico , Microbiota , Temperatura Alta , Recifes de Corais
9.
Sci Total Environ ; 919: 170648, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336078

RESUMO

Soil asymbiotic nitrogen (N) fixation provides a critical N source to support plant growth in alpine grasslands, and precipitation change is expected to lead to shifts in soil asymbiotic N fixation. However, large gaps remain in understanding the response of soil asymbiotic N fixation to precipitation gradients. Here we simulated five precipitation gradients (10 % (0.1P), 50 % (0.5P), 70 % (0.7P), 100 % (1.0P) and 150 % (1.5P) of the natural precipitation) in an alpine grassland of Qinghai-Tibetan Plateau and examined the soil nitrogenase activity and N fixation rate for each gradient. Quantitative PCR and high-throughput sequencing were used to measure the abundance and community composition of the soil nifH DNA (total diazotrophs) and nifH RNA reverse transcription (active diazotrophs) gene. Our results showed that the soil diazotrophic abundance, diversity and nifH gene expression rate peaked under the 0.5P. Soil nitrogenase activity and N fixation rate varied in the range 0.032-0.073 nmol·C2H4·g-1·h-1 and 0.008-0.022 nmol·N2·g-1·h-1 respectively, being highest under the 0.5P. The 50 % precipitation reduction enhanced the gene expression rates of Azospirillum and Halorhodospira which were likely responsible for the high N fixation potential. The 0.5P treatment also possessed a larger and more complex active diazotrophic network than the other treatments, which facilitated the resistance of diazotrophic community to environmental stress and thus maintained a high N fixation potential. The active diazotrophic abundance had the largest positive effect on soil N fixation, while nitrate nitrogen had the largest negative effect. Together, our study suggested that appropriate precipitation reduction can enhance soil N fixation through promoting the abundance of the soil active diazotrophs and decreasing soil nitrate nitrogen, and soil active diazotrophs and nitrate nitrogen should be considered in predicting soil N inputs in the alpine grassland of Qinghai-Tibetan Plateau under precipitation change.


Assuntos
Fixação de Nitrogênio , Solo , Pradaria , Tibet , Nitratos/análise , Nitrogênio/análise , Microbiologia do Solo , Nitrogenase/metabolismo
10.
Sci Total Environ ; 912: 169005, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065494

RESUMO

Biological nitrogen fixation and nitrification inhibitor applications contribute to improving soil nitrogen (N) availability, however, free-living N fixation affected by nitrification inhibitors has not been effectively evaluated in soils under different weed management methods. In this study, the effects of the nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate (DMPP) on the nitrogenase, nifH gene,and diazotrophic communities in soils under different weed management methods (AMB, weeds growth without mowing or glyphosate spraying; GS, glyphosate spraying; MSG, mowing and removing weeds and glyphosate spraying; and WM, mowing aboveground weeds) were investigated. Compared to the control counterparts, the DCD application decreased soil nitrogenase activity and nifH gene abundance by 4.5 % and 37.9 %, respectively, under the GS management method, and the DMPP application reduced soil nitrogenase activity by 20.4 % and reduced the nifH gene abundance by 83.4 % under the MSG management method. The application of nitrification inhibitors significantly elevated soil NH4+-N contents but decreased NO3--N contents, which had adverse impacts on soil nifH gene abundance and nitrogenase activity. The nifH gene abundances were also negatively impacted by dissolved organic N and Geobacter but were positively affected by available phosphorus and diazotrophic community structures. Nitrification inhibitors significantly inhibited Methylocella but stimulated Rhizobiales and affected soil diazotrophic communities. The nitrification inhibitors DCD and DMPP significantly altered soil diazotrophic community structures, but weed management outweighed nitrification inhibitors in reshaping soil diazotrophic community structures. The non-targeted effects of the nitrification inhibitors DMPP and DCD on soil free-living N fixation were substantially influenced by the weed management methods.


Assuntos
Fixação de Nitrogênio , Solo , Solo/química , Nitrificação , Iodeto de Dimetilfenilpiperazina/farmacologia , Nitrogenase , Fosfatos , Microbiologia do Solo , Nitrogênio/análise , Fertilizantes
11.
mBio ; : e0257223, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909748

RESUMO

The functional versatility of the Fe protein, the reductase component of nitrogenase, makes it an appealing target for heterologous expression, which could facilitate future biotechnological adaptations of nitrogenase-based production of valuable chemical commodities. Yet, the heterologous synthesis of a fully active Fe protein of Azotobacter vinelandii (AvNifH) in Escherichia coli has proven to be a challenging task. Here, we report the successful synthesis of a fully active AvNifH protein upon co-expression of this protein with AvIscS/U and AvNifM in E. coli. Our metal, activity, electron paramagnetic resonance, and X-ray absorption spectroscopy/extended X-ray absorption fine structure (EXAFS) data demonstrate that the heterologously expressed AvNifH protein has a high [Fe4S4] cluster content and is fully functional in nitrogenase catalysis and assembly. Moreover, our phylogenetic analyses and structural predictions suggest that AvNifM could serve as a chaperone and assist the maturation of a cluster-replete AvNifH protein. Given the crucial importance of the Fe protein for the functionality of nitrogenase, this work establishes an effective framework for developing a heterologous expression system of the complete, two-component nitrogenase system; additionally, it provides a useful tool for further exploring the intricate biosynthetic mechanism of this structurally unique and functionally important metalloenzyme. IMPORTANCE The heterologous expression of a fully active Azotobacter vinelandii Fe protein (AvNifH) has never been accomplished. Given the functional importance of this protein in nitrogenase catalysis and assembly, the successful expression of AvNifH in Escherichia coli as reported herein supplies a key element for the further development of heterologous expression systems that explore the catalytic versatility of the Fe protein, either on its own or as a key component of nitrogenase, for nitrogenase-based biotechnological applications in the future. Moreover, the "clean" genetic background of the heterologous expression host allows for an unambiguous assessment of the effect of certain nif-encoded protein factors, such as AvNifM described in this work, in the maturation of AvNifH, highlighting the utility of this heterologous expression system in further advancing our understanding of the complex biosynthetic mechanism of nitrogenase.

12.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37951299

RESUMO

We describe diazotrophs present during a 2015 GEOTRACES expedition through the Canadian Arctic Gateway (CAG) using nifH metabarcoding. In the less studied Labrador Sea, Bradyrhizobium sp. and Vitreoscilla sp. nifH variants were dominant, while in Baffin Bay, a Stutzerimonas stutzeri variant was dominant. In comparison, the Canadian Arctic Archipelago (CAA) was characterized by a broader set of dominant variants belonging to Desulfobulbaceae, Desulfuromonadales, Arcobacter sp., Vibrio spp., and Sulfuriferula sp. Although dominant diazotrophs fell within known nifH clusters I and III, only a few of these variants were frequently recovered in a 5-year weekly nifH times series in the coastal NW Atlantic presented herein, notably S. stutzeri and variants belonging to Desulfobacterales and Desulfuromonadales. In addition, the majority of dominant Arctic nifH variants shared low similarity (< 92% nucleotide identities) to sequences in a global noncyanobacterial diazotroph catalog recently compiled by others. We further detected UCYN-A throughout the CAG at low-levels using quantitative-PCR assays. Temperature, depth, salinity, oxygen, and nitrate were most strongly correlated to the Arctic diazotroph diversity observed, and we found a stark division between diazotroph communities of the Labrador Sea versus Baffin Bay and the CAA, hence establishing that a previously unknown biogeographic community division can occur for diazotrophs in the CAG.


Assuntos
Fixação de Nitrogênio , Nitrogênio , Filogenia , Canadá , Reação em Cadeia da Polimerase
13.
Front Microbiol ; 14: 1257521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744903

RESUMO

Grazing by local livestock is the traditional human practice in Qinghai-Tibetan Plateau grassland, and moderate intensity grazing can maintain high productivity and diversity of alpine grassland. Grazing ecosystems are often nitrogen-limited, but N2-fixing communities in response to yak grazing and Tibetan sheep grazing in Qinghai-Tibetan Plateau grassland have remained underexplored. In this study, we applied quantitative PCR quantitation and MiSeq sequencing of nifH under yak grazing and Tibetan grazing through a manipulated grazing experiment on an alpine grassland. The results showed that the grazing treatments significantly increased the soil ammonium nitrogen (AN) and total phosphorus (TP), but reduced the diazotrophs abundance. Compared with no grazing treatment, the composition of diazotrophs could be maximally maintained when the ratio of yak and Tibetan sheep were 1:2. The foraging strategies of grazing livestock reduced the legumes biomass, and thus reduced the diazotrophs abundance. Data analysis suggested that the direct key factors in regulating diazotrophs are AN and TP, and the changes of these two soil chemical properties were affected by the dung and urine of herbivore assemblages. Overall, these results indicated that the mixed grazing with a ratio of yak to Tibetan sheep as 1:2 can stabilize the soil diazotrophsic community, suggesting that MG12 are more reasonable grazing regimes in this region.

14.
Microb Ecol ; 86(4): 2733-2746, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532947

RESUMO

Nitrogen-fixing or diazotrophic microbes fix atmospheric nitrogen (N2) to ammonia (NH3+) using nitrogenase enzyme and play a crucial role in regulating marine primary productivity and carbon dioxide sequestration. However, there is a lack of information about the diversity, structure, and environmental regulations of the diazotrophic communities in the high Arctic fjords, such as Kongsfjorden. Here, we employed nifH gene sequencing to clarify variations in composition, community structure, and assembly mechanism among the diazotrophs of the salinity-driven stratified waters of Kongsfjorden. The principal environmental and ecological drivers of the observed variations were identified. The majority of the nifH gene sequences obtained in the present study belonged to cluster I and cluster III nifH phylotypes, accounting for 65% and 25% of the total nifH gene sequences. The nifH gene diversity and composition, irrespective of the size fractions (free-living and particle attached), showed a clear separation among water mass types, i.e., Atlantic-influenced versus glacier-influenced water mass. Higher nifH gene diversity and relative abundances of non-cyanobacterial nifH OTUs, affiliated with uncultured Rhizobiales, Burkholderiales, Alteromonadaceae, Gallionellaceae (cluster I) and uncultured Deltaproteobacteria including Desulfuromonadaceae (cluster III), were prevalent in GIW while uncultured Gammaproteobacteria and Desulfobulbaceae were abundant in AIW. The diazotrophic community assembly was dominated by stochastic processes, principally ecological drift, and to lesser degrees dispersal limitation and homogeneous dispersal. Differences in the salinity and dissolved oxygen content lead to the vertical segregation of diazotrophs among water mass types. These findings suggest that water column stratification affects the composition and assembly mechanism of diazotrophic communities and thus could affect nitrogen fixation in the Arctic fjord.


Assuntos
Estuários , Água , Svalbard , Fixação de Nitrogênio/genética , Nitrogênio , Processos Estocásticos
15.
Trends Plant Sci ; 28(12): 1391-1405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37270352

RESUMO

The importance of biological nitrogen fixation (BNF) in securing food production for the growing world population with minimal environmental cost has been increasingly acknowledged. Leaf surfaces are one of the biggest microbial habitats on Earth, harboring diverse free-living N2-fixers. These microbes inhabit the epiphytic and endophytic phyllosphere and contribute significantly to plant N supply and growth. Here, we summarize the contribution of phyllosphere-BNF to global N cycling, evaluate the diversity of leaf-associated N2-fixers across plant hosts and ecosystems, illustrate the ecological adaptation of N2-fixers to the phyllosphere, and identify the environmental factors driving BNF. Finally, we discuss potential BNF engineering strategies to improve the nitrogen uptake in plant leaves and thus sustainable food production.


Assuntos
Ecossistema , Fixação de Nitrogênio , Nitrogênio , Folhas de Planta
16.
Front Plant Sci ; 14: 1140454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251763

RESUMO

Zinc (Zn) is an indispensable element for proper plant growth. A sizeable proportion of the inorganic Zn that is added to soil undergoes a transformation into an insoluble form. Zinc-solubilizing bacteria (ZSB) have the potential to transform the insoluble Zn into plant-accessible forms and are thus promising alternatives for Zn supplementation. The current research was aimed at investigating the Zn solubilization potential of indigenous bacterial strains and to evaluate their impact on wheat growth and Zn biofortification. A number of experiments were conducted at the National Agriculture Research Center (NARC), Islamabad, during 2020-21. A total of 69 strains were assessed for their Zn-solubilizing ability against two insoluble Zn sources (ZnO and ZnCO3) using plate assay techniques. During the qualitative assay, the solubilization index and solubilization efficiency were measured. The qualitatively selected Zn-solubilizing bacterial strains were further tested quantitatively using broth culture for Zn and phosphorus (P) solubility. Tricalcium phosphate was used as insoluble source of P. The results showed that broth culture pH was negatively correlated with Zn solubilization, i.e., ZnO (r2 = 0.88) and ZnCO3 (r2 = 0.96). Ten novel promising strains, i.e., Pantoea sp. NCCP-525, Klebsiella sp. NCCP-607, Brevibacterium sp. NCCP-622, Klebsiella sp. NCCP-623, Acinetobacter sp. NCCP-644, Alcaligenes sp. NCCP-650, Citrobacter sp. NCCP-668, Exiguobacterium sp. NCCP-673, Raoultella sp. NCCP-675, and Acinetobacter sp. NCCP-680, were selected from the ecology of Pakistan for further experimentation on wheat crop based on plant growth-promoting rhizobacteria (PGPR) traits, i.e., solubilization of Zn and P in addition to being positive for nifH and acdS genes. Before evaluating the bacterial strains for plant growth potential, a control experiment was also conducted to determine the highest critical Zn level from ZnO to wheat growth using different Zn levels (0.1, 0.05, 0.01, 0.005, and 0.001% Zn) against two wheat varieties (Wadaan-17 and Zincol-16) in sand culture under glasshouse conditions. Zinc-free Hoagland nutrients solution was used to irrigate the wheat plants. As a result, 50 mg kg-1 of Zn from ZnO was identified as the highest critical level for wheat growth. Using the critical level (50 mg kg-1 of Zn), the selected ZSB strains were inoculated alone and in consortium to the seed of wheat, with and without the use of ZnO, in sterilized sand culture. The ZSB inoculation in consortium without ZnO resulted in improved shoot length (14%), shoot fresh weight (34%), and shoot dry weight (37%); with ZnO root length (116%), it saw root fresh weight (435%), root dry weight (435%), and Zn content in the shoot (1177%) as compared to the control. Wadaan-17 performed better on growth attributes, while Zincol-16 had 5% more shoot Zn concentration. The present study concluded that the selected bacterial strains show the potential to act as ZSB and are highly efficient bio-inoculants to combat Zn deficiency, and the inoculation of these strains in consortium performed better in terms of growth and Zn solubility for wheat as compared to individual inoculation. The study further concluded that 50 mg kg-1 Zn from ZnO had no negative impact on wheat growth; however, higher concentrations hampered wheat growth.

17.
Syst Appl Microbiol ; 46(4): 126433, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207476

RESUMO

Inga vera and Lysiloma tree legumes form nodules with Bradyrhizobium spp. from the japonicum group that represent novel genomospecies, for which we describe here using genome data, symbiovars lysilomae, lysilomaefficiens and ingae. Genes encoding Type three secretion system (TTSS) that could affect host specificity were found in ingae but not in lysilomae nor in lysilomaefficiens symbiovars and uptake hydrogenase hup genes (that affect nitrogen fixation) were observed in bradyrhizobia from the symbiovars ingae and lysilomaefficiens. nolA gene was found in the symbiovar lysilomaefficiens but not in strains from lysilomae. We discuss that multiple genes may dictate symbiosis specificity. Besides, toxin-antitoxin genes were found in the symbiosis islands in bradyrhizobia from symbiovars ingae and lysilomaefficiens. A limit (95%) to define symbiovars with nifH gene sequences was proposed here.


Assuntos
Bradyrhizobium , Fabaceae , Bradyrhizobium/genética , Nódulos Radiculares de Plantas , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Simbiose/genética , Análise de Sequência de DNA
18.
Tree Physiol ; 43(8): 1354-1364, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37073466

RESUMO

Endophytic nitrogen-fixing bacteria have been detected and isolated from the needles of conifer trees growing in North American boreal forests. Because boreal forests are nutrient-limited, these bacteria could provide an important source of nitrogen for tree species. This study aimed to determine their presence and activity in a Scandinavian boreal forest, using immunodetection of nitrogenase enzyme subunits and acetylene-reduction assays of native Scots pine (Pinus sylvestris L.) needles. The presence and rate of nitrogen fixation by endophytic bacteria were compared between control plots and fertilized plots in a nitrogen-addition experiment. In contrast to the expectation that nitrogen-fixation rates would decline in fertilized plots, as seen, for instance, with nitrogen-fixing bacteria associated with bryophytes, there was no difference in the presence or activity of nitrogen-fixing bacteria between the two treatments. The extrapolated calculated rate of nitrogen fixation relevant for the forest stand was 20 g N ha-1 year-1, which is rather low compared with Scots pine annual nitrogen use but could be important for the nitrogen-poor forest in the long term. In addition, of 13 colonies of potential nitrogen-fixing bacteria isolated from the needles on nitrogen-free media, 10 showed in vitro nitrogen fixation. In summary, 16S rRNA sequencing identified the species as belonging to the genera Bacillus, Variovorax, Novosphingobium, Sphingomonas, Microbacterium and Priestia, which was confirmed by Illumina whole-genome sequencing. Our results confirm the presence of endophytic nitrogen-fixing bacteria in Scots pine needles and suggest that they could be important for the long-term nitrogen budget of the Scandinavian boreal forest.


Assuntos
Bactérias Fixadoras de Nitrogênio , Pinus sylvestris , Taiga , RNA Ribossômico 16S , Acetileno , Nitrogênio
19.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047476

RESUMO

Lupin is a high-protein legume crop that grows in a wide range of edaphoclimatic conditions where other crops are not viable. Its unique seed nutrient profile can promote health benefits, and it has been proposed as a phytoremediation plant. Most rhizobia nodulating Lupinus species belong to the genus Bradyrhizobium, comprising strains that are phylogenetically related to B. cytisi, B. hipponenese, B. rifense, B. iriomotense/B. stylosanthis, B. diazoefficiens, B. japonicum, B. canariense/B. lupini, and B. retamae/B. valentinum. Lupins are also nodulated by fast-growing bacteria within the genera Microvirga, Ochrobactrum, Devosia, Phyllobacterium, Agrobacterium, Rhizobium, and Neorhizobium. Phylogenetic analyses of the nod and nif genes, involved in microbial colonization and symbiotic nitrogen fixation, respectively, suggest that fast-growing lupin-nodulating bacteria have acquired their symbiotic genes from rhizobial genera other than Bradyrhizobium. Horizontal transfer represents a key mechanism allowing lupin to form symbioses with bacteria that were previously considered as non-symbiotic or unable to nodulate lupin, which might favor lupin's adaptation to specific habitats. The characterization of yet-unstudied Lupinus species, including microsymbiont whole genome analyses, will most likely expand and modify the current lupin microsymbiont taxonomy, and provide additional knowledge that might help to further increase lupin's adaptability to marginal soils and climates.


Assuntos
Bradyrhizobium , Fabaceae , Lupinus , Rhizobium , Fabaceae/genética , Fabaceae/microbiologia , Lupinus/genética , Lupinus/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Filogenia , Transferência Genética Horizontal , Promoção da Saúde , DNA Bacteriano/genética , Verduras/genética , Rhizobium/genética , Bradyrhizobium/genética , Simbiose/genética , Análise de Sequência de DNA , RNA Ribossômico 16S/genética
20.
Arch Microbiol ; 205(4): 131, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947279

RESUMO

In this study, the diversity of diazotrophic bacteria of orchid Rhynchostylis retusa (L.) Blume and its potential application in plant growth promotion were evaluated. About 183 nitrogen-fixing bacteria were isolated to screen various plant growth-promoting traits viz. phosphate solubilization,IAA, siderophore, HCN, biofilm and ammonia production. Based on 16S rRNA gene sequencing analysis Achromobacter, Arthrobacter, Acinetobacter, Bacillus, Brevibacterium, Curtobacterium, Erwinia, Kosakonia, Lysinibacillus, Klebseilla, Microbacterium, Mixta, Pantoea, Pseudomonas and Stenotrophomonas isolates were selected and showed positive results for PGP traits. Overall, genus Pantoea, Brevibacterium, Achromobacter, Arthrobacter, Klebsiella, Mixta, Bacillus, and Pseudomonas had the most pronounced PGP characteristics and acetylene reduction among the screened isolates. BOX PCR fingerprinting analysis showed variation in polymorphic banding patterns among diazotrophic strains. PCR amplification of nifH gene and the presence of 37 kDa nitrogenase reductase enzyme band in western blot indicated presence of nitrogenase activity. Our study showed that orchid R. retusa diazotroph interaction helps orchid plant to fix nitrogen, essential nutrients, and control pathogen entry. To the best of our knowledge, this is the first report on characterization of diazotrophic bacterial community from aerial roots of R. retusa.


Assuntos
Bacillus , Bactérias , RNA Ribossômico 16S/genética , Bactérias/genética , Desenvolvimento Vegetal , Bacillus/genética , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA