RESUMO
Human activities in the last century have intensified global nitrogen deposition, resulting in the degradation of ecosystem function and loss of biodiversity worldwide. Nitrogen addition is a crucial method for examining the effects of atmospheric nitrogen deposition on species composition and structure of soil microbiome and biotic community, as exogenous nitrogen inputs can trigger cascading effects on ecosystem functions. In a 6-year experiment, we evaluated the impact of nitrogen addition on soil microbial-plant-insect systems in desert steppes. Our results show that nitrogen addition significantly altered soil microbial composition and ecological function, leading to a decrease in nitrogen-fixing bacteria and an increase in saprophytic fungi. High levels of nitrogen addition increased total plant biomass while decreasing species diversity. Additionally, high nitrogen addition levels suppressed below-ground biomass of gramineae and legumes compared to low nitrogen addition. Nitrogen addition also increased herbivore abundance by altering insect community structure, particularly benefiting chewing pests over sucking pests, thus heightening the risk of biological disasters through trophic cascading effects. Consequently, excessive nitrogen addition may destabilize desert steppe ecosystems by disturbing soil microbial-plant-insect interactions, hindering the maintenance of biotic community diversity and steppe productivity.
RESUMO
Urban greenspace soils can store equal amount of carbon, or even more, compared to agricultural and forest soils, and play an important role in carbon sequestration. Despite its importance, the patterns and drivers of the priming effect-a key and complex process in soil organic matter decomposition-in urban ecosystems remain poorly understood. Here, we sampled soils in urban lawns, suburban lawns, and forests, and conducted a 30-day microcosm incubation with 13C-labelled glucose and nitrogen additions to explore whether and how the intensity of soil organic matter priming effect differs between urbanized and forest ecosystems. We found that lawn soils in urban (7.01â¯mg C g-1 SOC) and suburban (5.86) areas had a significantly higher intensity of priming effect than forest soils (1.34), with further enhancement observed in urban lawn soils through simulated nitrogen deposition. Moreover, the alpha diversity of soil bacteria and fungi was found to play a crucial role in modulating the priming effect, exhibiting a positive correlation with its intensity. These findings advance our understanding of the potential mechanisms behind the soil priming effect in urban greenspaces, providing crucial insights for predicting soil carbon stocks and environmental impacts of urban development.
RESUMO
Although it has been demonstrated that atmospheric reactive nitrogen (i.e., Nr mainly including NH3, NH4+, NOx, NO3- and etc.) deposition has substantial impacts on nitrogen pools in remote and/or sensitive lakes, there is a scarcity of systematic evaluations regarding the impact on nitrogen burden in eutrophic lakes with riverine input as primary nitrogen source. Utilizing a regional atmospheric chemical transport model, combined with observation-based estimates of atmospheric nitrogen deposition fluxes and riverine nitrogen inputs, we investigate the contribution of atmospheric Nr deposition to the fifth largest freshwater lake located in eastern China, i.e., the Chaohu Lake which is facing frequent outbreaks of algal bloom. The results indicate that in the studied year of 2022, riverine total nitrogen (TN) input to the lake was 11553.3 t N yr-1 and atmospheric TN deposition was 2326.0 t N yr-1. For Nr species which are directly available for the biosphere supporting algae and plant growth, riverine NH4+ input was 1856.1 t N yr-1 and atmospheric NHx (NH3 and NH4+) deposition was 824.5 t N yr-1. The latter accounts for 30.8% of total NHx input to the lake. For NOy (HNO3 and NO3-), riverine NO3- input was estimated as 2621.7 t N yr-1, while atmospheric NOy deposition was 629.3 t N yr-1, accounting for 19.4%. In all, atmospheric Nr deposition accounts for 24.5 % of total Nr input to the lake. Our results suggest that even in regions with dense human activities with primary riverine N input, atmospheric deposition of Nr could also contribute significantly to the bio-available nitrogen in lake systems, and addressing eutrophication in Lake Chaohu and other eutrophic lakes will also need to consider the influence of atmospheric Nr deposition which is related to NH3 and NOx (i.e., NO + NO2, the precursor of NOy) emissions, in addition to the mitigation of riverine N input.
RESUMO
Inorganic carbon is an important component of soil carbon stocks, exerting a profound influence on climate change and ecosystem functioning. Drylands account for approximately 80% of the global soil inorganic carbon (SIC) pool within the top 200 cm. Despite its paramount importance, the components of SIC and their contributions to CO2 fluxes have been largely overlooked, resulting in notable gaps in understanding its distribution, composition, and responses to environmental factors across ecosystems, especially in deserts and temperate grasslands. Utilizing a dataset of 6011 samples from 173 sites across 224 million hectares, the data revealed that deserts and grasslands in northwestern China contain 20 ± 2.5 and 5 ± 1.3 petagrams of SIC in the top 100 cm, representing 5.5 and 0.76 times the corresponding soil organic carbon stock, respectively. Pedogenic carbonates (PIC), formed by the dissolution and re-precipitation of carbonates, dominated in grasslands, accounting for 60% of SIC with an area-weighted density of 3.4 ± 0.4 kg C m-2 at 0-100 cm depth, while lithogenic carbonates (LIC), inherited from soil parent materials, prevailed in deserts, constituting 55% of SIC with an area-weighted density of 7.1 ± 1.0 kg C m-2. Soil parent materials and elevation determined the SIC stocks by regulating the formation and loss of LIC in deserts, whereas natural acidification, mainly induced by rhizosphere processes including cation uptake and H+ release as well as precipitation, reduced SIC (mainly by PIC) in grasslands. Overall, the massive SIC pool underscores its irreplaceable role in maintaining the total carbon pool in drylands. This study sheds light on LIC and PIC and highlights the critical impact of natural acidification on SIC loss in grasslands.
Assuntos
Carbono , Clima Desértico , Pradaria , Solo , Solo/química , China , Carbono/análise , Ciclo do Carbono , Mudança Climática , Carbonatos/análiseRESUMO
Atmospheric nitrogen (N) and phosphorus (P) depositions have been shown to alter nutrient availability in terrestrial ecosystems and thus largely influence soil carbon cycling processes. However, the general pattern of nutrient-induced changes in the temperature response of soil carbon decomposition is unknown. Yet, understanding this pattern is crucial in terms of its effect on soil carbon-climate feedback. Here, we report that N and P additions significantly increase the temperature sensitivity of soil organic carbon decomposition (Q10) by sampling soils from 36 sites across China's forests. We found that N, P, and their co-addition (NP) significantly increased the Q10 by 11.3%, 11.5%, and 23.9%, respectively. The enhancement effect of nutrient addition on Q10 was more evident in soils from warm regions than in those from cold regions. Moreover, we found that nutrient-induced changes in substrate availability and initial substrate and nutrient availability mainly regulated nutrient addition effects. Our findings highlight that N and P deposition enhances the temperature response of soil carbon decomposition, suggesting that N and P deposition should be incorporated into Earth system models to improve the projections of soil carbon feedback to climate change.
Assuntos
Carbono , Florestas , Nitrogênio , Fósforo , Solo , Temperatura , Solo/química , Nitrogênio/análise , Nitrogênio/metabolismo , China , Fósforo/análise , Carbono/análise , Ciclo do Carbono , Mudança ClimáticaRESUMO
Dwarf bamboo (Fargesia denudata) is a crucial food source for the giant pandas. With its shallow root system and rapid growth, dwarf bamboo is highly sensitive to drought stress and nitrogen deposition, both major concerns of global climate change affecting plant growth and rhizosphere environments. However, few reports address the response mechanisms of the dwarf bamboo rhizosphere environment to these two factors. Therefore, this study investigated the effects of drought stress and nitrogen deposition on the physicochemical properties and microbial community composition of the arrow bamboo rhizosphere soil, using metagenomic sequencing to analyze functional genes involved in carbon and nitrogen cycles. Both drought stress and nitrogen deposition significantly altered the soil nutrient content, but their combination had no significant impact on these indicators. Nitrogen deposition increased the relative abundance of the microbial functional gene nrfA, while decreasing the abundances of nirK, nosZ, norB, and nifH. Drought stress inhibited the functional genes of key microbial enzymes involved in starch and sucrose metabolism, but promoted those involved in galactose metabolism, inositol phosphate metabolism, and hemicellulose degradation. NO3--N showed the highest correlation with N-cycling functional genes (p < 0.01). Total C and total N had the greatest impact on the relative abundance of key enzyme functional genes involved in carbon degradation. This research provides theoretical and technical references for the sustainable management and conservation of dwarf bamboo forests in giant panda habitats under global climate change.
Assuntos
Secas , Metagenômica , Nitrogênio , Rizosfera , Nitrogênio/metabolismo , Metagenômica/métodos , Microbiologia do Solo , Metagenoma , Estresse Fisiológico/genética , Poaceae/genética , Poaceae/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Solo/químicaRESUMO
Raised emissions of biologically reactive nitrogen (N) have intensified N deposition, enhancing tree productivity globally. Nonetheless, the drivers of forest sensitivity to N deposition remain unknown. We used stem growth data from 62,000 trees across Europe combined with N deposition data to track the effects of air temperature and precipitation on tree growth's sensitivity to N deposition and how it varied depending on leaf form over the past 30 years. Overall, N deposition enhanced conifer growth (until 30 kg N ha-1 yr-1) while decreasing growth for broadleaved angiosperms. Lower temperatures led to higher growth sensitivity to N deposition in conifers potentially exacerbated by N limitation. In contrast, higher temperatures stimulated growth sensitivity to N deposition for broadleaves. Higher precipitation equally increased N deposition sensitivity in all leaf forms. We conclude that air temperature and leaf form are decisive in disentangling the effect of N deposition in European forests, which provides crucial information to better predict the contribution of N deposition to land carbon sink enhancement.
RESUMO
Since the Industrial Revolution, human activities have led to a rapid and sustained increase in reactive nitrogen production, resulting in nitrogen enrichment at the Earth's surface and triggering many ecological and environmental issues. Stable isotopes are effective tools for tracing the sources and mechanisms of environmental processes. The nitrogen isotope values in surface environments integrate the isotope signatures of different nitrogen sources and the isotope fractionation effects of transformation processes. The composition of nitrogen isotopes can thus be utilized to trace the sources and cycling of nitrogen at the surface, aiding the development of strategies to reduce reactive nitrogen emissions, and assess the ecological effects of nitrogen enrichment. We reviewed the research progress on nitrogen isotope in the sources of reactive nitrogen in atmospheric systems, plant nitrogen utilization, and tracking of nitrogen processes in forest ecosystems. We further discussed how to gain a more systematic and accurate understanding of nitrogen cycle within and between the various spheres of the surface environment.
Assuntos
Atmosfera , Monitoramento Ambiental , Isótopos de Nitrogênio , Nitrogênio , Espécies Reativas de Nitrogênio , Atmosfera/química , Isótopos de Nitrogênio/análise , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Nitrogênio/análise , Nitrogênio/análise , Nitrogênio/química , Monitoramento Ambiental/métodos , Ecossistema , Ciclo do Nitrogênio , Planeta Terra , Florestas , Poluentes Atmosféricos/análise , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/químicaRESUMO
Nitrogen deposition and climate change have been identified as major threats to the biodiversity of semi-natural grasslands. Their relative contribution to recent biodiversity loss is however not fully understood, and may depend on local site conditions such as soil type, which hampers efforts to prevent further decline. We used data from >900 permanent plots in semi-natural grasslands in Dutch roadsides to investigate whether trends in plant diversity and community composition (2004-2020) could be explained by: (1) nitrogen deposition (NHx and NOy) and climate change (winter degree days and summer drought), (2) the interactive effect of nitrogen deposition and climate change, and (3) the interactive effect of nitrogen deposition and climate change with soil type. Overall we observed a decline in plant diversity and an increased dominance of tall species and grasses. These changes were linked to winter warming, but not to changes in summer drought and nitrogen deposition. The effect of winter warming was more pronounced in areas with higher NOy deposition, but was consistent across different soil types. Our results suggest that winter warming will become an important driver of plant diversity loss by altering competitive interactions, which could have major repercussions for other trophic levels and ecosystem services. Future conservation and restoration of grassland biodiversity therefore requires management regimes that are adapted to winter warming.
RESUMO
Nitrogen is the most limiting nutrient in wetland ecosystems. Changing in nitrogen nutrient status has a great effect on wetland carbon and nitrogen cycling. However, there is much uncertainty as to wetland greenhouse gas emissions response to nitrogen inputs in China. In this study, we synthesized 177 paired observations from 27 studies of greenhouse gases emissions related to nitrogen additions across wetland in China. The results showed nitrogen inputs significantly contributed to wetland carbon dioxide (CO2) and nitrous oxide (N2O) emissions but had no significant effect on methane (CH4). We further analyze the relationship between greenhouse gases emissions and soil properties, climate factors under nitrogen inputs. Regression analyses introducing explanatory variables showed that high nitrogen inputs (12 g N m-2 yr-1-24 g N m-2 yr-1) contributed more significantly to wetland CO2 and N2O emissions. Compared to other wetland types, alpine peatlands have a greater impact on CO2 and N2O emissions following nitrogen input. In addition, high altitude (> 1500 m and ≤ 3500 m) could promote wetland CO2 and N2O emissions more significantly after nitrogen input, but ultra-high altitude (> 3500 m) reduced CO2 emissions. CO2 and N2O emissions were more significantly promoted when mean annual temperature (MAT) was positive, and CO2 emissions increased with increasing mean annual precipitation (MAP). Wetland CO2 emissions can be significantly promoted when soil is acidic, while N2O emissions can be significantly promoted when soil is alkaline. N2O emissions increased with increasing of soil total nitrogen (TN) and soil organic carbon (SOC) contents. These findings highlight the characteristics of wetland greenhouse gas emissions following nitrogen input, and improve our ability to predict greenhouse gas emissions and help meet carbon neutrality targets.
Assuntos
Dióxido de Carbono , Nitrogênio , Óxido Nitroso , Áreas Alagadas , Óxido Nitroso/análise , China , Nitrogênio/análise , Dióxido de Carbono/análise , Gases de Efeito Estufa/análise , Solo/química , Poluentes Atmosféricos/análise , Metano/análise , Monitoramento AmbientalRESUMO
Biological nitrogen (N) fixation, an important pathway of N, inputs from the atmosphere to Earth's ecosystems, is well demonstrated to decline under N input. However, it remains unclear why N fixers sustain N fixation in many forests under high atmospheric N deposition. To address this knowledge gap, we analyzed the response of the diazotroph community to low N loads (short-term and low N addition; 3-year N addition at the rates of 25-50 kg N ha-1 year-1) vs high loads (chronic and high N addition; 9-year N addition at the rate of 150 kg N ha-1 year-1) in forest soils using high-throughput sequencing. Rates of N fixation decreased under low and high N loads (by 13%-27% and 10%-12%, respectively). Richness and alpha diversity (ACE and Chao1) of the soil diazotroph community decreased under low but not high N loads. Approximately 67.1%-74.4% of the nifH gene sequences at the OTU level overlapped between the control and low N loads, but only 52.0%-53.6% of those overlapped between the control and high N loads, indicating a larger shift of diazotroph community composition under high N loads. Low N loads increased soil NH4+ concentrations, which decreased diazotroph community richness, diversity, and N fixation rates, whereas the increased soil NH4+ concentrations under high N loads did not have negative impacts on the structure and function of the diazotroph community. These findings indicate that diazotrophs sustain N fixation under high N deposition via adjustment of their community composition in forest soils. IMPORTANCE: This study examined the changes in soil diazotroph community under different loads of simulated N deposition and analyzed its relationship with N fixation rates in in five forests using high-throughput sequencing. The magnitudes of N fixation rates reduced by low N loads were higher than those by high N loads. Low N loads decreased richness and diversity of diazotroph community, whereas diazotroph community structure remained stable under high N loads. Compared with low N loads, high N loads resulted in a less similarity and overlap of nifH gene sequences among the treatments and a larger adjustment of diazotroph community. Low N loads increased soil NH4+ concentrations, which decreased diazotroph community richness, diversity, and N fixation rates, whereas the increased soil NH4+ under high N loads did not have negative impacts on diazotroph community structure and N fixation. Based on these findings, it is urgently needed to incorporate the loads of N deposition and the composition of diazotroph community into terrestrial N-cycling models for accurate understanding of N inputs in forest ecosystems.
Assuntos
Fixação de Nitrogênio , Nitrogênio , Microbiologia do Solo , Nitrogênio/metabolismo , Solo/química , Florestas , Bactérias/metabolismo , Bactérias/genéticaRESUMO
The Competitor, Stress Tolerator, and Ruderal (CSR) theory delineates the ecological strategies of plant species. Nevertheless, how these ecological strategies shift at the levels of individuals, functional groups and plant communities to cope with increasing nitrogen deposition remains unclear. In this study, simulated nitrogen deposition experiments were performed in high-altitude grasslands of alpine meadows and alpine steppe on the Qinghai-Tibetan Plateau (QTP) by employing the strategy and functional type framework (StrateFy) methodology to evaluate plant CSR strategies. Our results indicated that the dominant ecological strategy of the high-altitude grassland on the QTP were predominantly aligned with the R-strategy. In both alpine meadow and alpine steppe grasslands, the community-weighted mean (CWM) of C scores were increased with nitrogen addition, while CWM of R and S scores were not significantly correlated with nitrogen addition. Remarkably, the increase in C scores due to nitrogen enrichment was observed solely in non-legumes, suggesting an enhanced competitive capability of non-legumes in anticipation of future nitrogen deposition. Leymus secalinus was dominated in both alpine meadow and alpine steppe grasslands across all levels of nitrogen deposition, with increasing C scores along the nitrogen gradients. Furthermore, the sensitivity of C scores of individual plant, functional group and plant community to nitrogen deposition rates was more pronounced in alpine steppe grassland than in alpine meadow grassland. These findings furnish novel insights into the alterations of ecological strategies in high-altitude alpine grasslands on the QTP and similar regions worldwide in cope with escalating nitrogen deposition.
Assuntos
Altitude , Pradaria , Nitrogênio , Nitrogênio/análise , Plantas , Tibet , Poaceae , China , Monitoramento AmbientalRESUMO
To understand the effects of nitrogen deposition on element cycling and nutrient limitation status in forest ecosystems, we examined the effects of nitrogen deposition on the stoichiometric characteristics of forest soil-microbial-extracellular enzymes in Pinus yunnanensis forest. We conducted a field experiment with control (CK, 0 g N·m-2·a-1), low nitrogen (LN, 10 g N·m-2·a-1), medium nitrogen (MN, 20 g N·m-2·a-1) and high nitrogen (HN, 25 g N·m-2·a-1) since 2019. We collected soil samples (0-5 cm, 5-10 cm and 10-20 cm) at September 2022, and measured the contents of soil organic, total nitrogen, total phosphorus, microbial biomass carbon, nitrogen and phosphorus (MBC, MBN, MBP) and the activities of C, N, and P acquisition enzymes. The results showed that nitrogen deposition significantly reduced soil organic content, C:N and C:P by 6.9%-29.8%, 7.6%-45.2% and 6.5%-28.6%, and increased soil total N content and N:P by 10.0%-45.0% and 19.0%-46.0%, respectively. Nitrogen addition did not affect soil total P content. Except for soil C:N and C:P, soil nutrient content and stoichiometric ratio were highest in 0-5 cm soil layer. MN and HN treatments significantly decreased MBN by 11.0%-12.7%. MBC, MBP, and their stoichiometry did not change significantly under nitrogen deposition. Soil microbial nutrient content in 0-5 cm soil layer was significantly higher than that in other soil layers. Nitrogen deposition significantly decreased the activities of cellobiose hydrolase and leucine aminopeptidase (decreased by 14.5%-16.2% and 48.7%-66.3%). HN treatment promoted ß-1,4-glucosidase activity (increased by 68.0%), but inhibited soil enzyme stoichiometric carbon to nitrogen ratio and nitrogen to phosphorus ratio (decreased by 95.4% and 88.4%). LN and MN treatment promoted ß-1,4-N-acetylglucosaminidase activity (increased by 68.3%-116.6%), but inhibited enzyme stoichiometric carbon to phosphorus ratio (decreased by 14.9%-29.4%). Alkaline phosphatase activity had no significant change. Soil enzyme activities were significantly decreased with increasing soil depth. Soil total N and total P and microbial nutrients were negatively correlated with vector angle (representing microbial nitrogen or phosphorus limitation), while vector length (representing microbial carbon limitation) was consistently significantly positively correlated with vector angle, suggesting the synergistic promotion between microbial carbon limitation and phosphorus limitation. Nitrogen deposition gradually shifted to phosphorus limitation while alleviating microbial nitrogen limitation in P. yunnanensis forest. In addition, microbial activities in this region was limited by C availability, and the relationship between microbial C and P limitation was proportional.
Assuntos
Carbono , Florestas , Nitrogênio , Fósforo , Pinus , Microbiologia do Solo , Solo , Nitrogênio/análise , Nitrogênio/metabolismo , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , China , Solo/química , Carbono/análise , Carbono/metabolismo , Fósforo/análise , Fósforo/metabolismo , EcossistemaRESUMO
Global change is affecting the distribution and population dynamics of plant species across the planet, leading to trends such as shifts in distribution toward the poles and to higher elevations. Yet, we poorly understand why individual species respond differently to warming and other environmental changes, or how the trait composition of communities responds. Here we ask two questions regarding plant species and community changes over 42 years of global change in a temperate montane forest in Québec, Canada: (1) How did the trait composition, alpha diversity, and beta diversity of understory vascular plant communities change between 1970 and 2010, a period over which the region experienced 1.5°C of warming and changes in nitrogen deposition? (2) Can traits predict shifts in species elevation and abundance over this time period? For 46 understory vascular species, we locally measured six aboveground traits, and for 36 of those (not including shrubs), we also measured five belowground traits. Collectively, they capture leading dimensions of phenotypic variation that are associated with climatic and resource niches. At the community level, the trait composition of high-elevation plots shifted, primarily for two root traits: specific root length decreased and rooting depth increased. The mean trait values of high-elevation plots shifted over time toward values initially associated with low-elevation plots. These changes led to trait homogenization across elevations. The community-level shifts in traits mirrored the taxonomic shifts reported elsewhere for this site. At the species level, two of the three traits predicting changes in species elevation and abundance were belowground traits (low mycorrhizal fraction and shallow rooting). These findings highlight the importance of root traits, which, along with leaf mass fraction, were associated with shifts in distribution and abundance over four decades. Community-level trait changes were largely similar across the elevational and temporal gradients. In contrast, traits typically associated with lower elevations at the community level did not predict differences among species in their shift in abundance or distribution, indicating a decoupling between species- and community-level responses. Overall, changes were consistent with some influence of both climate warming and increased nitrogen availability.
Assuntos
Biomassa , Mudança Climática , Raízes de Plantas , Plantas , Raízes de Plantas/fisiologia , Plantas/classificação , Fatores de Tempo , QuebequeRESUMO
Nutrient addition, particularly nitrogen, often increases plant aboveground biomass but causes species loss. Asymmetric competition for light is frequently assumed to explain the biomass-driven species loss. However, it remains unclear whether other factors such as water can also play a role. Increased aboveground leaf area following nitrogen addition and warming may increase transpiration and cause water limitation, leading to a decline in diversity. To test this, we conducted field measurements in a grassland community exposed to nitrogen and water addition, and warming. We found that warming and/or nitrogen addition significantly increased aboveground biomass but reduced species richness. Water addition prevented species loss in either nitrogen-enriched or warmed treatments, while it partially mitigated species loss in the treatment exposed to increases in both temperature and nitrogen. These findings thus strongly suggest that water limitation can be an important driver of species loss as biomass increases after nitrogen addition and warming when soil moisture is limiting. This result is further supported by a meta-analysis of published studies across grasslands worldwide. Our study indicates that loss of grassland species richness in the future may be greatest under a scenario of increasing temperature and nitrogen deposition, but decreasing precipitation.
Assuntos
Biodiversidade , Biomassa , Pradaria , Nitrogênio , Água , Nitrogênio/metabolismo , Temperatura , Aquecimento Global , Poaceae/fisiologiaRESUMO
The phenomenon of nitrogen deposition resulting in species loss in terrestrial ecosystems has been demonstrated in several experiments. Nitrogen (N) and phosphorus (P), as major nutrients required for plant growth, exhibit ecological stoichiometric coupling in many ecosystems. The increased availability of nitrogen can exacerbate the ecological effects of phosphorus. To reveal the ecological effects of phosphorus under nitrogen-limiting and non-limiting conditions, we conducted a controlled N-P interaction experiment over 5 years in the Hulunbuir meadow steppe, where two nitrogen addition levels were implemented: 0 g N·m-2·a-1 (nitrogen-limiting condition) and 10 g N·m-2·a-1 (nitrogen-non-limiting condition), together with six levels of phosphorus addition (0, 2, 4, 6, 8, and 10 g P·m-2·a-1). The results showed that nitrogen addition (under nitrogen-non-limiting conditions) significantly decreased species diversity in the steppe community, which was exacerbated under phosphorus addition. Under nitrogen-limiting conditions, phosphorus addition had no marked impact on species diversity compared to the control; however, there were substantial differences between different levels of phosphorus addition, exhibiting a unimodal change. Under both experimental nitrogen conditions, the addition of 6 g P·m-2·a-1 was the threshold for affecting the community species diversity. Nitrogen addition reduced the relative biomass of legumes, bunch grasses, and forbs, but substantially increased the relative biomass of rhizomatous grasses. In contrast, phosphorus addition only markedly affected the relative biomass of forbs and rhizomatous grasses, with the former showing a unimodal pattern of first increasing and then decreasing with increasing phosphorus addition level, and the latter exhibiting the opposite pattern. The different responses of rhizomatous grasses and other functional groups to nitrogen and phosphorus addition were observed to have a regulatory effect on the changes in grassland community structure. Phosphorus addition may increase the risk of nitrogen deposition-induced species loss. Both nitrogen and phosphorus addition lead to soil acidification and an increase in the dominance of the already-dominant species, and the consequent species loss in the forb functional group represents the main mechanism for the reduction in community species diversity.
RESUMO
The deposition of nitrogen in soil may be influenced by the presence of different nitrogen components, which may affect the accessibility of soil nitrogen and invasive plant-soil microbe interactions. This, in turn, may alter the success of invasive plants. This study aimed to clarify the influences of the invasive plant Bidens pilosa L. on the physicochemical properties, carbon and nitrogen contents, enzymatic activities, and bacterial communities in soil in comparison to the native plant Pterocypsela laciniata (Houtt.) Shih treated with simulated nitrogen deposition at 5 g nitrogen m-2 yr-1 in four forms (nitrate, ammonium, urea, and mixed nitrogen). Monocultural B. pilosa resulted in a notable increase in soil pH but a substantial decrease in the moisture, electrical conductivity, ammonium content, and the activities of polyphenol oxidase, ß-xylosidase, FDA hydrolase, and sucrase in soil in comparison to the control. Co-cultivating B. pilosa and P. laciniata resulted in a notable increase in total soil organic carbon content in comparison to the control. Monocultural B. pilosa resulted in a notable decrease in soil bacterial alpha diversity in comparison to monocultural P. laciniata. Soil FDA hydrolase activity and soil bacterial alpha diversity, especially the indices of Shannon's diversity, Simpson's dominance, and Pielou's evenness, exhibited a notable decline under co-cultivated B. pilosa and P. laciniata treated with nitrate in comparison to those treated with ammonium, urea, and mixed nitrogen.
RESUMO
Increasing nitrogen (N) deposition alters the availability of soil nutrients and is likely to intensify phosphorus (P) limitations, especially in P-limited tropical and subtropical forests. Soil microorganisms play vital roles in carbon (C) and nutrient cycling, but it is unclear whether and how much N and P imbalances affect the soil's microbial metabolism and mechanisms of nutrient limitations. In this study, a 3-year field experiment of N and P addition (control (CK), 100 kg N ha-1 yr-1 (N), 50 kg P ha-1 yr-1 (P), and NP) was set up to analyze the extracellular enzyme activities and stoichiometry characteristics of the top mineral soils in Chinese fir plantations with different stand ages (7, 20, and 33 years old). The results showed that the enzyme activities associated with the acquisition of C (ß-1,4-glucosidase (BG) and ß-d-cellobiohydrolase (CBH)) and P (acid phosphatases (APs)) in the N treatment were significantly higher than those in the CK treatment. Moreover, vector analysis revealed that both the vector's length and angle increased in stands of all ages, which indicated that N addition aggravated microbial C and P limitations. The P and NP treatments both significantly decreased the activity of AP and the enzymes' N:P ratio, thereby alleviating microbial P limitations, as revealed by the reduction in the vector's angle. Stand age was found to promote all enzymatic activities but had no obvious effects on the limitation of microbial metabolism with or without added nutrients in the soils under Chinese fir. Available N, Olsen-P, and pH were the main drivers of microbial metabolic limitations related to C nutrients. These results provide useful data for understanding the change in soil microbial activity in response to environmental changes, and suggest that P fertilization should be considered for management to improve productivity and C sequestration in Chinese fir plantation in the context of increased deposition of N.
RESUMO
Atmospheric nitrogen (N) deposition has been substantially reduced due to declines in the reactive N emission in major regions of the world. Nevertheless, the impact of reduced N deposition on soil microbial communities and the mechanisms by which they are regulated remain largely unknown. Here, we examined the effects of N addition and cessation of N addition on plant and soil microbial communities through a 17-year field experiment in a temperate grassland. We found that extreme N input did not irreversibly disrupt the ecosystem, but ceasing high levels of N addition led to greater resilience in bacterial and fungal communities. Fungi exhibited diminished resilience compared to bacteria due to their heightened reliance on changes in plant communities. Neither bacterial nor fungal diversity fully recovered to their original states. Their sensitivity and resilience were mainly steered by toxic metal ions and soil pH differentially regulating on functional taxa. Specifically, beneficial symbiotic microbes such as N-fixing bacteria and arbuscular mycorrhizal fungi experienced detrimental effects from toxic metal ions and lower pH, hindering their recovery. The bacterial functional groups involved in carbon decomposition, and ericoid mycorrhizal and saprotrophic fungi were positively influenced by soil metals, and demonstrated gradual recovery. These findings could advance our mechanistic understanding of microbial community dynamics under ongoing global changes, thereby informing management strategies to mitigate the adverse effects of N enrichment on soil function.
Assuntos
Bactérias , Metais , Microbiota , Nitrogênio , Microbiologia do Solo , Solo , Nitrogênio/metabolismo , Solo/química , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Metais/metabolismo , Fungos/fisiologia , Fungos/metabolismo , Pradaria , Micorrizas/fisiologia , Concentração de Íons de HidrogênioRESUMO
In river networks, reservoirs are hotspots for nutrient transformations, providing multiple pathways for nitrogen processing. One of the less measured pathways is nitrogen deposition. Here, we investigated the decadal relationship between water residence time and nitrogen deposition using sediment cores from eight mainstem reservoirs within a river system containing two contrasting watersheds. One watershed was significantly urbanized with regulated flow and the other watershed was unregulated with extensive rural land use. We explored the relationship of sediment nitrogen concentrations across a range of residence times, land uses, and other parameters throughout this linked river-reservoir system. Results show that average annual residence time had the strongest relationship to nitrogen deposition when compared to reservoir volume, mean depth, surface area, outflow, and land use. Pigment analysis revealed that residence time influences nitrogen by allowing for longer periods of algal uptake, followed by deposition in particulate organic form. Supporting this mechanism, sedimentary C:N, with low values representing greater algal influence, expressed a strong and negative relationship with average annual residence time, as well as a positive relationship between residence time and photosynthetic pigments diagnostic of cyanobacteria, diatoms, and a combination of green algae+cyanobacteria. Furthermore, we investigated how drought conditions could alter residence times and intensify nitrogen cycling through primary productivity in reservoirs. Drought increased residence time by 45-60 %. This increase was estimated to raise sediment nitrogen concentrations by roughly 2.5-4 %.