Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.342
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39007929

RESUMO

Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.

2.
World J Gastrointest Oncol ; 16(6): 2592-2609, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994155

RESUMO

BACKGROUND: Liver cancer (LIHC) is a malignant tumor that occurs in the liver and has a high mortality in cancer. The ING family genes were identified as tumor suppressor genes. Dysregulated expression of these genes can lead to cell cycle arrest, senescence and/or apoptosis. ING family genes are promising targets for anticancer therapy. However, their role in LIHC is still not well understood. AIM: To have a better understanding of the important roles of ING family members in LIHC. METHODS: A series of bioinformatics approaches (including gene expression analysis, genetic alteration analysis, survival analysis, immune infiltration analysis, prediction of upstream microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) of ING1, and ING1-related gene functional enrichment analysis) was applied to study the expression profile, clinical relationship, prognostic significance and immune infiltration of ING in LIHC. The relationship between ING family genes expression and tumor associated immune checkpoints was investigated in LIHC. The molecular mechanism of ING1 mediated hepatocarcinogenesis was preliminarily discussed. RESULTS: mRNA/protein expression of different ING family genes in LIHC was analyzed in different databases, showing that ING family genes were highly expressed in LIHC. In 47 samples from 366 LIHC patients, the ING family genes were altered at a rate of 13%. By comprehensively analyzing the expression, clinical pathological parameters and prognostic value of ING family genes, ING1/5 was identified. ING1/5 was related to poor prognosis of LIHC, suggesting that they may play key roles in LIHC tumorigenesis and progression. One of the target miRNAs of ING1 was identified as hsa-miR-214-3p. Two upstream lncRNAs of hsa-miR-214-3p, U91328.1, and HCG17, were identified. At the same time, we found that the expression of ING family genes was correlated with immune cell infiltration and immune checkpoint genes. CONCLUSION: This study lays a foundation for further research on the potential mechanism and clinical value of ING family genes in the treatment and prognosis of LIHC.

3.
Curr Med Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38994619

RESUMO

INTRODUCTION: Osteosarcoma (OS) drug resistance often leads to a poor prognosis. Recent evidence suggests that long non-coding RNAs play a crucial role in regulating tumor drug resistance. METHOD: This study aims to investigate the involvement of lncRNA LAMTOR5-AS1 in OS. RNA-seq and qRT-PCR were performed, and the relationship between LAMTOR5- AS1, miR-34a-3p, SIRT1, and HNF4A was determined using Dual-luciferase reporter assays and RNA immunoprecipitation assays. Gain- and loss-of-function assays were measured using CCK-8, cell proliferation, and colony formation assays. RESULT: The study found that the dysregulated LAMTOR5-AS1 acts as a competing endogenous RNA (ceRNA) and competitively protects the HNF4A mRNA 3' UTR from miR-34a-3p. In addition, in vitro functional studies showed that HNF4A can physically interact with SIRT1 to synergistically inhibit osteosarcoma drug resistance. The study found that LAMTOR5-AS1 regulates drug resistance in osteosarcoma through the miR-34a-3p/HNF4A or miR-34a-3p/SIRT1/HNF4A axis. CONCLUSION: These findings offer new insights into lncRNA-mediated drug resistance in cancer and may serve as potential biomarkers for cancer therapy.

4.
Sci China Life Sci ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38995489

RESUMO

Many long noncoding RNAs (lncRNAs) have been identified through siRNA-based screening as essential regulators of embryonic stem cell (ESC) pluripotency. However, the biological and molecular functions of most lncRNAs remain unclear. Here, we employed CRISPR/Cas9-mediated knockout technology to explore the functions of 8 lncRNAs previously reported to promote pluripotency in mouse ESCs. Unexpectedly, all of these lncRNAs were dispensable for pluripotency maintenance and proliferation in mouse ESCs when disrupted individually or in combination. Single-cell transcriptomic analysis also showed that the knockout of these lncRNAs has a minimal impact on pluripotency gene expression and cell identity. We further showed that several small hairpin RNAs (shRNAs) previously used to knock down lncRNAs caused the downregulation of pluripotency genes in the corresponding lncRNA-knockout ESCs, indicating that off-target effects likely responsible for the pluripotency defects caused by these shRNAs. Interestingly, linc1343-knockout and linc1343-knockdown ESCs failed to form cystic structures and exhibited high expression of pluripotency genes during embryoid body (EB) differentiation. By reintroducing RNA products generated from the linc1343 locus, we found that two snoRNAs, Snora73a and Snora73b, but not lncRNAs, could rescue pluripotency silencing defects during EB differentiation of linc1343 knockout ESCs. Our results suggest that the 8 previously annotated pluripotency-regulating lncRNAs have no overt functions in conventional ESC culture; however, we identified snoRNA products derived from an annotated lncRNA locus as essential regulators for silencing pluripotency genes.

5.
Hematology ; 29(1): 2375045, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39012197

RESUMO

OBJECTIVES: Constitutive activation of Janus kinase 2 (JAK2)/signal transducer and activator of transcription (STAT) signaling pathway is central to the pathogenesis of myeloproliferative neoplasms (MPNs). Long noncoding RNAs (lncRNAs) regulate diverse biological processes. However, the role of lncRNAs in MPN pathogenesis is not well studied. METHODS: The expression of lnc-AC004893 in MPN patients was measured by quantitative real-time PCR (qRT-PCR). Gene-specific short hairpin RNAs (shRNAs) were designed to inhibit the expression of lnc-AC004893, and western blot was performed to explore the role of lnc-AC004893 via regulating the JAK2/STAT5 signaling pathway. Furthermore, co-IP was performed to determine the binding ability of lnc-AC004893 and STAT5 protein. Finally, the BaF3-JAK2V617F-transplanted mouse model was used to assess the biological role of lnc-ac004893 in vivo. RESULTS: We report that lnc-AC004893, a poorly conserved pseudogene-209, is substantially upregulated in MPN cells compared with normal controls (NCs). Knockdown of lnc-AC004893 by specific shRNAs suppressed cell proliferation and decreased colony formation. Furthermore, the knockdown of lnc-AC004893 reduced the expression of p-STAT5 but not total STAT5 in HEL and murine IL-3-dependent Ba/F3 cells, which present constitutive and inducible activation of JAK2/STAT5 signaling. In addition, inhibition of murine lnc-ac004893 attenuated BaF3-JAK2V617F-transplanted phenotypes and extended the overall survival. Mechanistically, knockdown of lnc-AC004893 enhanced the binding ability of STAT5 and protein tyrosine phosphatase SHP1. Furthermore, knockdown of lnc-AC004893 decreased STAT5-lnc-AC004893 interaction but not SHP1-lnc-AC004893 interaction. CONCLUSION: Lnc-AC004893 regulates STAT5 phosphorylation by affecting the interaction of STAT5 and SHP1. Lnc-AC004893 might be a potential therapeutic target for MPN patients.


Assuntos
Transtornos Mieloproliferativos , RNA Longo não Codificante , Fator de Transcrição STAT5 , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , RNA Longo não Codificante/genética , Humanos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Camundongos , Animais , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Transdução de Sinais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
Biomark Med ; : 1-15, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982732

RESUMO

Dermatologic disorders, affecting the integumentary system, involve diverse molecular mechanisms such as cell proliferation, apoptosis, inflammation and immune responses. Long noncoding RNAs, particularly Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), are crucial regulators of gene expression. MALAT1 influences inflammatory responses, immune cell function and signaling pathways, impacting various physiological and pathological processes, including dermatologic disorders. Dysregulation of MALAT1 is observed in skin conditions like psoriasis, atopic dermatitis and systemic lupus erythematosus. However, its precise role remains unclear. This review consolidates knowledge on MALAT1's impact on skin biology and pathology, emphasizing its potential diagnostic and therapeutic implications in dermatologic conditions.


[Box: see text].

7.
JCI Insight ; 9(12)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912578

RESUMO

Our previous study identified 8 risk and 9 protective plasma miRNAs associated with progression to end-stage kidney disease (ESKD) in diabetes. This study aimed to elucidate preanalytical factors that influence the quantification of circulating miRNAs. Using the EdgeSeq platform, which quantifies 2,002 miRNAs in plasma, including ESKD-associated miRNAs, we compared miRNA profiles in whole plasma versus miRNA profiles in RNA extracted from the same plasma specimens. Less than half of the miRNAs were detected in standard RNA extraction from plasma. Detection of individual and concentrations of miRNAs were much lower when RNA extracted from plasma was quantified by RNA sequencing (RNA-Seq) or quantitative reverse transcription PCR (qRT-PCR) platforms compared with EdgeSeq. Plasma profiles of miRNAs determined by the EdgeSeq platform had excellent reproducibility in assessment and had no variation with age, sex, hemoglobin A1c, BMI, and cryostorage time. The risk ESKD-associated miRNAs were detected and measured accurately only in whole plasma and using the EdgeSeq platform. Protective ESKD-associated miRNAs were detected by all platforms except qRT-PCR; however, correlations among concentrations obtained with different platforms were weak or nonexistent. In conclusion, preanalytical factors have a profound effect on detection and quantification of circulating miRNAs in ESKD in diabetes. Quantification of miRNAs in whole plasma and using the EdgeSeq platform may be the preferable method to study profiles of circulating cell-free miRNAs associated with ESKD and possibly other diseases.


Assuntos
MicroRNA Circulante , Falência Renal Crônica , Humanos , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Falência Renal Crônica/sangue , Falência Renal Crônica/genética , Masculino , Feminino , Pessoa de Meia-Idade , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/diagnóstico , Biomarcadores/sangue , Idoso , Reprodutibilidade dos Testes , Adulto , MicroRNAs/sangue , MicroRNAs/genética , Progressão da Doença , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Diabetes Mellitus/diagnóstico
8.
Mol Cell Endocrinol ; 592: 112321, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936596

RESUMO

The tricarboxylic acid (TCA) cycle is an essential interface that coordinates cellular metabolism and is as a primary route determining the fate of a variety of fuel sources, including glucose, fatty acid and glutamate. The crosstalk of nutrients replenished TCA cycle regulates breast cancer (BC) progression by changing substrate levels-induced epigenetic alterations, especially the methylation, acetylation, succinylation and lactylation. Long non-coding RNAs (lncRNA) have dual roles in inhibiting or promoting energy reprogramming, and so altering the metabolic flux of fuel sources to the TCA cycle, which may regulate epigenetic modifications at the cellular level of BC. This narrative review discussed the central role of the TCA cycle in interconnecting numerous fuels and the induced epigenetic modifications, and the underlying regulatory mechanisms of lncRNAs in BC.

9.
Front Microbiol ; 15: 1386345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827147

RESUMO

Insects depend on humoral immunity against intruders through the secretion of antimicrobial peptides (AMPs) and immune effectors via NF-κB transcription factors, and their fitness is improved by gut bacterial microbiota. Although there are growing numbers of reports on noncoding RNAs (ncRNAs) involving in immune responses against pathogens, comprehensive studies of ncRNA-AMP regulatory networks in Riptortus pedestris, which is one of the widely distributed pests in East Asia, are still not well understood under feeding environmental changes. The objective of this study employed the whole-transcriptome sequencing (WTS) to systematically identify the lncRNAs (long noncoding RNA) and circRNAs (circular RNA) and to obtain their differential expression from the R. pedestris gut under different feeding conditions. Functional annotation indicated that they were mainly enriched in various biological processes with the GO and KEGG databases, especially in immune signaling pathways. Five defensin (four novel members) and eleven lysozyme (nine novel members) family genes were identified and characterized from WTS data, and meanwhile, phylogenetic analysis confirmed their classification. Subsequently, the miRNA-mRNA interaction network of above two AMPs and lncRNA-involved ceRNA (competing endogenous RNA) regulatory network of one lysozyme were predicted and built based on bioinformatic prediction and calculation, and the expression patterns of differentially expressed (DE) defensins, and DE lysozymes and related DE ncRNAs were estimated and selected among all the comparison groups. Finally, to integrate the analyses of WTS and previous 16S rRNA amplicon sequencing, we conducted the Pearson correlation analysis to reveal the significantly positive or negative correlation between above DE AMPs and ncRNAs, as well as most changes in the gut bacterial microbiota at the genus level of R. pedestris. Taken together, the present observations provide great insights into the ncRNA regulatory networks of AMPs in response to rearing environmental changes in insects and uncover new potential strategies for pest control in the future.

10.
World J Clin Oncol ; 15(5): 664-666, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38835842

RESUMO

This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs (lncRNAs) in the prognosis and therapeutic targeting of colorectal cancer (CRC). By evaluating recent research, including the pivotal study "Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes" by Wang et al, this analysis underscores the critical role of lncRNAs in deciphering the molecular complexities of CRC. Highlighting the innovative methodologies and significant findings, I discuss the implications for patient survival, therapeutic response, and the potential of lncRNAs as biomarkers for precision medicine. The integration of bioinformatics, clinical databases, and molecular biology in these studies offers a promising avenue for advancing CRC treatment strategies and improving patient outcomes.

11.
Curr Pharm Des ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38859791

RESUMO

Primary liver cancer is the second leading cause of cancer-related death worldwide. At present, liver cancer is often in an advanced stage once diagnosed, and treatment effects are generally poor. Therefore, there is an urgent need for other powerful treatments. Macrophages are an important component of the tumor microenvironment, and macrophage polarization is crucial to tumor proliferation and differentiation. Regulatory interactions between macrophage subtypes, such as M1 and M2, lead to a number of clinical outcomes, including tumor progression and metastasis. So, it is important to study the drivers of this process. Long non-coding RNA has been widely proven to be of great value in the early diagnosis and treatment of tumors. Many studies have shown that long non-coding RNA participates in macrophage polarization through its ability to drive M1 or M2 polarization, thereby participating in the occurrence and development of liver cancer. In this article, we systematically elaborated on the long non-coding RNAs involved in the polarization of liver cancer macrophages, hoping to provide a new idea for the early diagnosis and treatment of liver cancer. Liver cancer- related studies were retrieved from PubMed. Based on our identification of LncRNA and macrophage polarization as powerful therapies for liver cancer, we analyzed research articles in the PubMed system in the last ten years on the crosstalk between LncRNA and macrophage polarization. By targeting M1/M2 macrophage polarization, LncRNA may promote or suppress liver cancer, and the references are determined primarily by the article's impact factor. Consequently, the specific mechanism of action between LncRNA and M1/M2 macrophage polarization was explored, along with the role of their crosstalk in the occurrence, proliferation, and metastasis of liver cancer. lncRNA is bidirectionally expressed in liver cancer and can target macrophage polarization to regulate tumor behavior. lncRNA mainly functions as ceRNA and can participate in the crosstalk between liver cancer cells and macrophages through extracellular vesicles. lncRNA can potentially participate in the immunotherapy of liver cancer by targeting macrophages and becoming a new biomolecular marker of liver cancer.

12.
Front Endocrinol (Lausanne) ; 15: 1337226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933820

RESUMO

Exosomes, as pivotal entities within the tumor microenvironment, orchestrate intercellular communication through the transfer of diverse molecules, among which non-coding RNAs (ncRNAs) such as miRNAs, lncRNAs, and circRNAs play a crucial role. These ncRNAs, endowed with regulatory functions, are selectively incorporated into exosomes. Emerging evidence underscores the significance of exosomal ncRNAs in modulating key oncogenic processes in thyroid cancer (TC), including proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunoediting. The unique composition of exosomes shields their cargo from enzymatic and chemical degradation, ensuring their integrity and facilitating their specific expression in plasma. This positions exosomal ncRNAs as promising candidates for novel diagnostic and prognostic biomarkers in TC. Moreover, the potential of exosomes in the therapeutic landscape of TC is increasingly recognized. This review aims to elucidate the intricate relationship between exosomal ncRNAs and TC, fostering a deeper comprehension of their mechanistic involvement. By doing so, it endeavors to propel forward the exploration of exosomal ncRNAs in TC, ultimately paving the way for innovative diagnostic and therapeutic strategies predicated on exosomes and their ncRNA content.


Assuntos
Progressão da Doença , Exossomos , RNA não Traduzido , Neoplasias da Glândula Tireoide , Humanos , Exossomos/metabolismo , Exossomos/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , RNA não Traduzido/genética , Microambiente Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Animais , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica
13.
Dent J (Basel) ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38920860

RESUMO

During the last few decades there has been a growing interest in understanding the involvement of epigenetics in the pathogenesis and treatment of periodontal disease. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), may serve as epigenetic modifiers affecting the expression of genes involved in the pathogenesis of inflammatory and autoimmune diseases. There is increasing evidence supporting the idea that the function of all three types of ncRNAs seems to be interdependent. LncRNAs can act as miRNA decoys, while circRNAs can act as miRNA sponges, leading to the re-expression of miRNA target genes. The purpose of this review is to evaluate the expression patterns of ncRNAs in periodontal disease. Studies demonstrate a positive correlation between miRNA expression and periodontitis; however, this cannot be claimed for lncRNAs and circRNAs, which appear to be differentially expressed in periodontitis patients. Several studies have also suggested utilizing ncRNAs as diagnostic and prognostic biomarkers in periodontitis, or even as potential therapeutic targets; Nevetheless, the evidence to support this is premature. Future well-designed research remains necessary to establish the functional role of ncRNAs in the evolution and progression of periodontal disease.

14.
Front Endocrinol (Lausanne) ; 15: 1422599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832352

RESUMO

RNA biology has revolutionized cancer understanding and treatment, especially in endocrine-related malignancies. This editorial highlights RNA's crucial role in cancer progression, emphasizing its influence on tumor heterogeneity and behavior. Processes like alternative splicing and noncoding RNA regulation shape cancer biology, with microRNAs, long noncoding RNAs, and circular RNAs orchestrating gene expression dynamics. Aberrant RNA signatures hold promise as diagnostic and prognostic biomarkers in endocrine-related cancers. Recent findings, such as aberrant PI3Kδ splice isoforms and epithelial-mesenchymal transition-related lncRNA signatures, unveil potential therapeutic targets for personalized treatments. Insights into m6A-associated lncRNA prognostic models and the function of lncRNA LINC00659 in gastric cancer represents ongoing research in this field. As understanding of RNA's role in cancer expands, personalized therapies offer transformative potential in managing endocrine-related malignancies. This signifies a significant stride towards precision oncology, fostering innovation for more effective cancer care.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética , MicroRNAs/genética , Medicina de Precisão/métodos , RNA/genética , RNA Circular/genética , Animais
15.
Neurobiol Stress ; 31: 100639, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38765062

RESUMO

Toll-like receptors (TLRs) are a family of innate immune receptors that recognize molecular patterns in foreign pathogens and intrinsic danger/damage signals from cells. TLR7 is a nucleic acid sensing endosomal TLR that is activated by single-stranded RNAs from microbes or by small noncoding RNAs that act as endogenous ligands. TLR7 signals through the MyD88 adaptor protein and activates the transcription factor interferon regulatory factor 7 (IRF7). TLR7 is found throughout the brain and is highly expressed in microglia, the main immune cells of the brain that have also been implicated in alcohol drinking in mice. Upregulation of TLR7 mRNA and protein has been identified in postmortem hippocampus and cortex from AUD subjects that correlated positively with lifetime consumption of alcohol. Similarly, Tlr7 and downstream signaling genes were upregulated in rat hippocampal and cortical slice cultures after chronic alcohol exposure and in these regions after chronic binge-like alcohol treatment in mice. In addition, repeated administration of the synthetic TLR7 agonists imiquimod (R837) or resiquimod (R848) increased voluntary alcohol drinking in different rodent models and produced sustained upregulation of IRF7 in the brain. These findings suggest that chronic TLR7 activation may drive excessive alcohol drinking. In the brain, this could occur through increased levels of endogenous TLR7 activators, like microRNAs and Y RNAs. This review explores chronic TLR7 activation as a pathway of dysregulated neuroimmune signaling in AUD and the endogenous small RNA ligands in the brain that could perpetuate innate immune responses and escalate alcohol drinking.

16.
Life Sci ; 348: 122717, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38744419

RESUMO

The loss or dysfunction of pancreatic ß-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged ß-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive ß-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of ß-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of ß-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate ß-cell genetic programs for generating alternative ß-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in ß-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.


Assuntos
Diferenciação Celular , Células Secretoras de Insulina , RNA não Traduzido , Engenharia Tecidual , Células Secretoras de Insulina/metabolismo , Engenharia Tecidual/métodos , Humanos , RNA não Traduzido/genética , Animais , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/terapia , Hidrogéis
17.
Wiley Interdiscip Rev RNA ; 15(3): e1847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38702948

RESUMO

The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Assuntos
RNA não Traduzido , Animais , RNA não Traduzido/metabolismo , RNA não Traduzido/genética , Humanos , Comportamento Animal , Regulação da Expressão Gênica
18.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815580

RESUMO

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Assuntos
Proteínas de Ciclo Celular , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Fúngico/genética , RNA Interferente Pequeno/genética
19.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38818815

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and its morbidity is increasing worldwide due to increasing prevalence. Metabolic reprogramming has been recognized as a hallmark of cancer and serves a role in cancer progression. Glucose, lipids and amino acids are three major components whose altered metabolism can directly affect the energy production of cells, including liver cancer cells. Nutrients and energy are indispensable for the growth and proliferation of cancer cells, thus altering the metabolism of hepatoma cells can inhibit the progression of HCC. The present review summarizes recent studies on tumour regulatory molecules, including numerous noncoding RNAs, oncogenes and tumour suppressors, which regulate the metabolic activities of glucose, lipids and amino acids by targeting key enzymes, signalling pathways or interactions between the two. These regulatory molecules can regulate the rapid proliferation of cancer cells, tumour progression and treatment resistance. It is thought that these tumour regulatory factors may serve as therapeutic targets or valuable biomarkers for HCC, with the potential to mitigate HCC drug resistance. Furthermore, the advantages and disadvantages of metabolic inhibitors as a treatment approach for HCC, as well as possible solutions are discussed, providing insights for developing more effective treatment strategies for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Animais , Metabolismo Energético , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Reprogramação Metabólica
20.
Phytother Res ; 38(6): 3240-3267, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739454

RESUMO

Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Polifenóis , RNA Longo não Codificante , RNA Longo não Codificante/genética , Polifenóis/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA