Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(20)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39456674

RESUMO

The Northern snakehead (Channa argus) is a significant economic aquaculture species in China. Exhibiting sexual dimorphism in the growth rate between females and males, mono-sex breeding holds substantial value for aquaculture. This study employed GWAS and transcriptome analysis were applied to identify sex determination genomic regions and develop sex-specific markers. A total of 270 single-nucleotide polymorphisms (SNPs) and 31 insertion-deletions (InDels) were identified as being sexually dimorphic through GWAS and fixation index (Fst) scanning. Based on GWAS results, two sex-specific InDel markers were developed, effectively distinguishing genetic sex for XX females, XY males, and YY super-males via (polymerase chain reaction) PCR amplification. A major genomic segment of approximately 115 kb on chromosome 3 (Chr 03) was identified as the sex-determination region. A comparative transcriptome analysis of gonads for three sexes identified 158 overlapping differentially expressed genes (DEGs). Additionally, three sex-related candidate genes were identified near the sex determination region, including id2, sox11, and rnf144a. Further studies are required to elucidate the functions of these genes. Overall, two sex-specific InDel markers support a male heterogametic XX/XY sex-determination system in Northern snakeheads and three candidate genes offer new insights into sex determination and the evolution of sex chromosomes in teleost fish.


Assuntos
Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Processos de Determinação Sexual , Animais , Masculino , Feminino , Processos de Determinação Sexual/genética , Estudo de Associação Genômica Ampla/métodos , Perfilação da Expressão Gênica/métodos , Mutação INDEL , Transcriptoma/genética , Peixes/genética , Caracteres Sexuais , Cromossomos Sexuais/genética
2.
Fish Shellfish Immunol ; 151: 109708, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908810

RESUMO

Leukocyte-derived chemotaxin-2 (LECT2) is a multifunctional immunoregulator that plays several pivotal roles in the host's defense against pathogens. This study aimed to elucidate the specific functions and mechanisms of LECT2 (CaLECT2) in the northern snakehead (Channa argus) during infections with pathogens such as Nocardia seriolae (N. seriolae). We identified CaLECT2 in the northern snakehead, demonstrating its participation in the immune response to N. seriolae infection. CaLECT2 contains an open reading frame (ORF) of 459 bp, encoding a peptide of 152 amino acids featuring a conserved peptidase M23 domain. The CaLECT2 protein shares 62%-84 % identities with proteins from various other fish species. Transcriptional expression analysis revealed that CaLECT2 was constitutively expressed in all examined tissues, with the highest expression observed in the liver. Following intraperitoneal infection with N. seriolae, CaLECT2 transcription increased in the spleen, trunk kidney, and liver. In vivo challenge experiments showed that injecting recombinant CaLECT2 (rCaLECT2) could protect the snakehead against N. seriolae infection by reducing bacterial load, enhancing serum antibacterial activity and antioxidant capacity, and minimizing tissue damage. Moreover, in vitro analysis indicated that rCaLECT2 significantly enhanced the migration, respiratory burst, and microbicidal activity of the head kidney-derived phagocytes. These findings provide new insights into the role of LECT2 in the antibacterial immunity of fish.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Nocardiose , Nocardia , Animais , Nocardiose/veterinária , Nocardiose/imunologia , Nocardia/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Filogenia , Sequência de Aminoácidos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Peixes/imunologia , Peixes/genética , Perciformes/imunologia , Perciformes/genética , Sequência de Bases
3.
J Vet Pharmacol Ther ; 47(2): 134-142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37853794

RESUMO

Enrofloxacin (ENR) is widely used in aquaculture practice, but little is known about its pharmacokinetic, withdrawal period and dietary risk in fish via bath administration. The purpose of this study was to provide data support for the use of ENR bath therapy in the northern snakehead (Channa argus). The pilot study was carried out to evaluate the therapy concentrations of ENR in northern snakehead with immersion concentrations ranged from 5 to 40 mg/L for 6 h. Based on results of the pilot study, an ENR immersion concentration of 20 mg/L was used for the formal experiment. At this dose, the peak concentrations of ENR in plasma, muscle plus skin, liver and kidney were 4.85, 4.55, 3.87 and 7.42 µg/mL (or g), respectively. According to the AUC0-∞ values, the distribution of ENR in northern snakehead followed the order of kidney > plasma > liver > muscle + skin. The elimination of ENR in northern snakehead was very slow, the half-lives (T1/2λz ) were up to 90.31, 85.5, 104.56 and 120.9 h in plasma, muscle plus skin, liver and kidney, respectively. Ciprofloxacin (CIP) was not detected in any samples in the pilot study and was only occasionally detected in muscle plus skin and liver samples in formal experiment. Based on the calculated PK/PD index AUC/MIC and Cmax /MIC, the current bath treatment regimen will have a good therapeutic effect on infections caused by bacteria with MIC below 0.6 µg/mL. The dietary risk assessment suggested that there was a dietary risk (Hazard Quotients > 10%) until day 6 after bath treatment. It is mandatory for ENR to maintain a withdrawal period of at least 450°C-day in northern snakehead after bath treatment ceased.


Assuntos
Peixes , Animais , Enrofloxacina/farmacocinética , Projetos Piloto , Área Sob a Curva
4.
J Aquat Anim Health ; 36(1): 84-90, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155367

RESUMO

OBJECTIVE: At the U.S. Geological Survey Leetown Research Laboratory in Kearneysville, West Virginia, an approximately 3-year-old, captive-held Northern Snakehead Channa argus with clinical signs of abdominal distention died and was necropsied 1 day after an examination under anesthesia. A mass discovered in the midcoelomic cavity, presumed to be deformed spleen, was comprised of large, pseudocystic structures that contained considerable volumes of opaque, straw-colored fluid. METHODS: A histopathological evaluation revealed that the tissue consisted of foci of small capillaries, nodular areas of proliferating, pleomorphic endothelial cells, and areas of necrosis within the pseudocyst wall. Positive nuclear and nonspecific immunolabeling with a vascular marker, cluster of differentiation 31, was concentrated in and around vascular spaces. RESULT: Based on these observations, the tumor has been putatively identified as a hemangioendothelial neoplasm. CONCLUSION: This would represent the first report of a vascular tumor in a Northern Snakehead and, globally, one of the few described neoplasms identified in a member of the Channidae family.


Assuntos
Células Endoteliais , Neoplasias , Animais , Rios , Peixes , Neoplasias/veterinária
5.
Front Immunol ; 14: 1149151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114056

RESUMO

Introduction: Dietary tryptophan (Trp) has been shown to influence fish feed intake, growth, immunity and inflammatory responses. The purpose of this study was to investigate the effect and mechanism of Trp on immune system of juvenile northern snakehead (Channa argus Cantor, 1842). Methods: A total of 540 fish (10.21 ± 0.11 g) were fed six experimental diets containing graded levels of Trp at 1.9, 3.0, 3.9, 4.8, 5.9 and 6.8 g/kg diet for 70 days, respectively. Results and Discussion: The results showed that supplementation of 1.9-4.8 g/kg Trp in diets had no effect on the hepatosomatic index (HSI) and renal index (RI), while dietary 3.9 and 4.8 g/kg Trp significantly increased spleen index (SI) of fish. Dietary 3.9, 4.8, 5.9 and 6.8 g/kg Trp enhanced the total hemocyte count (THC), the activities of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD). Malondinaldehyde (MDA) levels in the blood were significantly decreased by consuming 3.9 and 4.8 g/kg Trp. Fish fed with 3.0 and 3.9 g/kg Trp diets up-regulated interleukin 6 (il-6) and interleukin 8 (il-8) mRNA levels. The expression of tumor necrosis factor α (tnf-α) was highest in fish fed with 3.0 g/kg Trp diet, and the expression of interleukin 1ß (il-1ß) was highest in fish fed with 3.9 g/kg Trp diet. Dietary 4.8, 5.9 and 6.8 g/kg Trp significantly decreased il-6 and tnf-α mRNA levels in the intestine. Moreover, Trp supplementation was also beneficial to the mRNA expression of interleukin 22 (il-22). Additionally, the mRNA expression levels of target of rapamycin (tor), toll-like receptor-2 (tlr2), toll-like receptor-4 (tlr4), toll-like receptor-5 (tlr5) and myeloid differentiation primary response 88 (myd88) of intestine were significantly up-regulated in fish fed 1.9, 3.0 and 3.9 g/kg Trp diets, and down-regulated in fish fed 4.8, 5.9 and 6.8 g/kg Trp diets. Dietary 4.8 and 5.9 g/kg Trp significantly increased the expression of inhibitor of nuclear factor kappa B kinase beta subunit (ikkß) and decreased the expression of inhibitor of kappa B (iκbα), but inhibited nuclear transcription factor kappa B (nf-κb) mRNA level. Collectively, these results indicated that dietary 4.8 g/kg Trp could improve antioxidant capacity and alleviate intestinal inflammation associated with TOR and TLRs/MyD88/NF-κB signaling pathways.


Assuntos
Antioxidantes , Carpas , Animais , Antioxidantes/farmacologia , NF-kappa B/metabolismo , Triptofano/farmacologia , Triptofano/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Suplementos Nutricionais , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Carpas/metabolismo , Dieta , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Mensageiro , Receptores Toll-Like/metabolismo , Imunidade
6.
Ecotoxicol Environ Saf ; 255: 114825, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989948

RESUMO

Intestinal inflammation is a protective response that is implicated in bacterial enteritis triggered by gastrointestinal infection. The immune mechanisms elicited in teleost against the infection of Aeromonas veronii are largely unknown. In this study, we performed a de novo northern snakehead (Channa argus) transcriptome assembly using Illumina sequencing platform. On this basis we performed a comparative transcriptomic analysis of northern snakehead intestine from A. veronii-challenge and phosphate buffer solution (PBS)-challenge fish, and 2076 genes were up-regulated and 1598 genes were down-regulated in the intestines infected with A. veronii. The Gene Ontology (GO) enrichment analysis indicated that the differentially expressed genes (DEGs) were enriched to 27, 21 and 20 GO terms in biological process, cellular component, and molecular function, respectively. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 420 DEGs were involved in 194 pathways. Moreover, 33 DEGs were selected for quantitative real-time PCR analysis to validate the RNA-seq data. The results reflected the consistency of the expression levels between qRT-PCR and RNA-seq data. In addition, a time-course analysis of the mRNA expression of 33 immune-related genes further indicated that the intestinal inflammation to A. veronii infection simultaneously regulated gene expression alterations. The present study provides transcriptome data of the teleost intestine, allowing us to understand the mechanisms of intestinal inflammation triggered by bacterial pathogens. DATA AVAILABILITY STATEMENT: All data supporting the findings of this study are available within the article and Supplementary files. The RNA-seq raw sequence data are available in NCBI short read archive (SRA) database under accession number PRJNA615958.


Assuntos
Aeromonas veronii , Transcriptoma , Animais , Aeromonas veronii/genética , Perfilação da Expressão Gênica , Intestinos , Imunidade , Inflamação
7.
Open Biol ; 13(2): 220235, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789536

RESUMO

Body colour is an important economic trait for commercial fishes. Recently, a new colour morph displaying market-favoured yellow skin (termed as yellow-mutant, YM) of northern snakehead (Channa argus) was discovered in China. We confirmed that YM snakehead is an albino with complete loss of melanin in the skin and eyes by histological and ultrastructural observations, and inherited as a recessive Mendelian trait. By applying genomic analysis approaches, in combination with gene knockdown and rescue experiments, we suggested a non-sense mutation in slc45a2 (c.383G > A) is the causation for the YM snakehead. Notably, significantly higher levels of key melanogenesis genes (tyr, tyrp1, dct and pmel) and phospho-MITF protein were detected in YM snakehead than those in wild-type individuals, and the underlying mechanism was further investigated by comparative transcriptomic analysis. Results revealed that differential expressed genes involved in pathways like MAPK, WNT and calcium signalling were significantly induced in YM snakehead, which might account for the increased amount of melanogenesis elements, and presumably be stimulated by fibroblast-derived melanogenic factors in a paracrine manner. Our study clarified the genetic basis of colour variation in C. argus and provided the preliminary clue indicating the potential involvement of fibroblasts in pigmentation in fish.


Assuntos
Peixes , Perfilação da Expressão Gênica , Animais , Peixes/genética , Mutação , Genômica
8.
Dev Comp Immunol ; 139: 104576, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36240859

RESUMO

Non-specific cytotoxic cells (NCCs) are essential to the cytotoxic cell-mediated immune response in teleost. The fish non-specific cytotoxic cell receptor protein 1 (NCCRP1) plays an important role as a membrane protein in the recognition of target cells and the activation of NCC. However, the roles of fish NCCs during pathogen infection require comprehensive studies. In this study, the coding sequence of northern snakehead (Channa argus) nccrp1 (Canccrp1) was cloned. Canccrp1 contains an open reading frame of 690 bp, encoding a peptide of 229 amino acids with a conserved F-box-associated domain (FBA) and proline-rich motifs (PRMs). Transcriptional expression analysis revealed that the constitutive expression of Canccrp1 was higher in the immune-related organs, such as liver, kidneys, and spleen. Moreover, mRNA and protein expression of Canccrp1 gradually increased in the spleen at 1-6 days post infection (dpi) with Nocardia seriolae, in addition to reaching peak expression in both the kidneys and liver at 2 dpi. A polyclonal antibody prepared against recombinant CaNCCRP1 effectively labeled NCCs in peripheral blood and different tissues. Then, immunofluorescence (IF) staining showed that the number of NCCs was significantly increased and showed a scattered distribution in the early stages of N. seriolae infection (2 and 4 dpi) before the forming of granulomas. At the late stages of N. seriolae infection (6 dpi), more NCCs migrated to preexisting granulomas, showing significant coaccumulation with N. seriolae. All these results clearly indicate the expression changes of CaNCCRP1, and the number and localization changes of NCCs post-N. seriolae infection, implying potential roles for fish NCCs in the antimicrobial infection process in fish.


Assuntos
Proliferação de Células , Animais
9.
Genomics ; 114(3): 110357, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378240

RESUMO

Northern snakehead (Channa argus) is an indigenous fish species and is one of popularly cultured snakeheads in China and other Asian countries. Unfortunately, Nocardia seriolae infections have caused considerable losses in the snakehead aquaculture industry. However, the infectivity and the immune response induced by N. seriolae in snakehead are unclear. In order to better understand the immune response of Northern snakehead in a series of time points after N. seriolae challenge, we conducted the transcriptomic comparison in snakehead spleen at 48, 96, and 144 h after the challenge of N. seriola against their control counterparts. Gene annotation and pathway analysis of differentially expressed genes (DEGs) were carried out to understand the functions of the DEGs. Additionally, protein-protein interaction networks were conducted to obtain the interaction relationships of immune-related DEGs. These results revealed the expression changes of multiple DEGs and signaling pathways involved in immunity during N. seriolae infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the northern snakehead.


Assuntos
Nocardiose , Nocardia , Animais , Baço , Nocardia/genética , Nocardiose/genética , Nocardiose/microbiologia , Perfilação da Expressão Gênica
10.
Microb Pathog ; 135: 103622, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31323322

RESUMO

Myeloperoxidase (MPO) is a ferrous lysosomal protein with many immune functions that belongs to the heme peroxidase enzyme. In this study, the functions of MPO in the northern snakehead (Channa argus) were investigated by cloning an MPO cDNA sequence with a full length of 3181 bp. Homology analysis showed that northern snakehead MPO gene had the highest (81%) homology with mandarin fish (Siniperca chuatsi). In healthy northern snakehead, the MPO gene was expressed in the head-kidney, kidney, heart, gill, spleen, liver, and muscles but not midgut. After the northern snakehead was infected with Aeromonas veronii, the MPO gene expression varied in different tissues with low level in spleen, liver, gill and muscle, fluctuated in kidney and head-kidney and showed high level in heart. The result indicated that MPO might play an important role in the antimicrobial immune response of the northern snakehead.


Assuntos
Aeromonas veronii/patogenicidade , Doenças dos Peixes/microbiologia , Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária , Peroxidase/fisiologia , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Peixes/genética , Expressão Gênica , Coração , Rim/patologia , Fígado/metabolismo , Músculos/metabolismo , Peroxidase/classificação , Peroxidase/genética , Filogenia , Baço/metabolismo
11.
Gen Comp Endocrinol ; 281: 49-57, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121162

RESUMO

Potassium channel subfamily K member 3 (KCNK3) has been reported to play important roles in membrane potential conduction, pulmonary hypertension and thermogenesis regulation in mammals. However, its roles remain largely unknown and scarce reports were seen in fish. In the present study, we for the first time identified two kcnk3 genes (kcnk3a and kcnk3b) from the carnivorous Northern snakehead (Channa argus) by molecular cloning and a genomic survey. Subsequently, their transcription changes in response to different feeding status were investigated. Full-length coding sequences of the kcnk3a and kcnk3b genes are 1203 and 1176 bp, encoding 400 and 391 amino acids, respectively. Multiple alignments, 3D-structure prediction and phylogenetic analysis further suggested that these kcnk3 genes may be highly conserved in vertebrates. Tissue distribution analysis by real-time PCR demonstrated that both the snakehead kcnk3s were widely transcribed in majority of the examined tissues but with different distribution patterns. In a short-term (24-h) fasting experiment, we observed that brain kcnk3a and kcnk3b genes showed totally opposite transcription patterns. In a long-term (2-week) fasting and refeeding experiment, we also observed differential change patterns for the brain kcnk3 genes. In summary, our findings suggest that the two kcnk3 genes are close while present different transcription responses to fasting and refeeding. They therefore can be potentially selected as novel target genes for improvement of production and quality of this economically important fish.


Assuntos
Jejum/fisiologia , Comportamento Alimentar , Peixes/genética , Canais de Potássio de Domínios Poros em Tandem/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Genoma , Filogenia , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sintenia/genética , Distribuição Tecidual , Peixe-Zebra/genética
12.
Lett Appl Microbiol ; 69(2): 100-109, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31107978

RESUMO

Members of the genus Aeromonas are opportunistic pathogen of a variety of aquatic animals that exhibits multidrug resistance, phenotypes, virulence genes and virulence. The present study described the species distribution and the potential pathogenicity of Aeromonas isolated from healthy Northern snakehead (Channa argus) in China. Molecular identification revealed that A. veronii biovar veronii (69/167; 41·3%) and A. hydrophila (41/167; 24·6%) were the most common species found in Northern snakehead intestine based on sequencing of the 16S rRNA gene and DNA gyrase subunit B protein. The distribution of seven virulence factors including aer (84·4%), act (80·8%), ser (40·1%), Aha (27·5%), lip (23·4%), exu (15·0%) and LuxS (12·6%) were determined exclusively in Aeromonas isolates. All the seven virulence genes were present in 9·6% (16/167), among which 11 strains were identified as A. veronii biovar veronii. For the strains harbouring seven virulence genes, the 50% lethal doses (LD50 ) of isolates were lower compared to the isolates carrying two virulence genes. The challenge tests revealed that isolate W31 had the lowest lethal dose, causing 50% mortality at 4·5 × 103 colony-forming units (CFU) per ml. Furthermore, histopathology of Northern snakehead infected with Aeromonas strains showed necrosis and congestion in liver, spleen and kidney and also damage to the intestine. This study confirms that the Aeromonas strains isolated from healthy Northern snakehead may be a cause of concern for public health. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas species are widely distributed in aquatic environments and have considerable virulence potential. The aim of this study was to identify Aeromonas strains isolated from healthy Northern snakehead, and to investigate if Aeromonas species isolated from healthy fish potential pathogenicity with special reference to virulence and epidemiology studies.


Assuntos
Aeromonas/patogenicidade , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Fatores de Virulência/genética , Aeromonas/genética , Aeromonas/isolamento & purificação , Animais , Proteínas de Bactérias/genética , China/epidemiologia , DNA Girase/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Peixes , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Humanos , Saúde Pública , Virulência/genética
13.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(6): 971-973, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27245097

RESUMO

Relationships of two species of Channa argus (northern snakeheads) named "Bicolor type" and "White type", as well as other six Channa species were investigated based on their partial sequence of mitochondrial DNA 16S rRNA genes in the present study. For the Channa family, the average genetic distance was 0.0863 with the inter-species genetic distance ranged from 0.0173 to 0.1384, and the average intra-species genetic distance in the genus channa was estimated as 0.00273 (range: 0.0019 to 0.0038). For the two C. argus species, the mean pair-wise genetic distance between "Bicolor type" and "White type" northern snakehead was estimated as 0.00218, which was within the intra-species genetic distance interval for Channa species, indicating that they belonged to the same species at molecular level. Moreover, these snakeheads can be divided into two distinct groups via 16S rRNA, which might be more accurate for Channa classification than traditional method based on the absence or presence of the pelvic fins of the fish.


Assuntos
Peixes/genética , Variação Genética , Filogenia , Animais , Peixes/metabolismo , Genes Mitocondriais , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Mar Genomics ; 29: 89-96, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27318671

RESUMO

Aerial breathing in fish was an important adaption for successful survival in hypoxic water. All aerial breathing fish are bimodal breathers. It is intriguing that they can obtain oxygen from both air and water. However, the genetic basis underlying bimodal breathing has not been extensively studied. In this study, we performed next-generation sequencing on a bimodal breathing fish, the Northern snakehead, Channa argus, and generated a transcriptome profiling of C. argus. A total of 53,591 microsatellites and 26,378 SNPs were identified and classified. A Ka/Ks analysis of the unigenes indicated that 63 genes were under strong positive selection. Furthermore, the transcriptomes from the aquatic breathing organ (gill) and the aerial breathing organ (suprabranchial chamber) were sequenced and compared, and the results showed 1,966 genes up-regulated in the gill and 2,727 genes up-regulated in the suprabranchial chamber. A gene pathway analysis concluded that four functional categories were significant, of which angiogenesis and elastic fibre formation were up-regulated in the suprabranchial chamber, indicating that the aerial breathing organ may be more efficient for gas exchange due to its highly vascularized and elastic structure. In contrast, ion uptake and transport and acid-base balance were up-regulated in the gill, indicating that the aquatic breathing organ functions in ion homeostasis and acid-base balance, in addition to breathing. Understanding the genetic mechanism underlying bimodal breathing will shed light on the initiation and importance of aerial breathing in the evolution of vertebrates.


Assuntos
Perciformes/fisiologia , Respiração , Transcriptoma , Animais , Perfilação da Expressão Gênica/veterinária , Especificidade de Órgãos , Perciformes/genética , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA