Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Development ; 151(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39087588

RESUMO

The Spalt transcriptional regulators participate in a variety of cell fate specification processes during development, regulating transcription through interactions with DNA AT-rich regions. Spalt proteins also bind to heterochromatic regions, and some of their effects require interactions with the NuRD chromatin remodeling and deacetylase complex. Most of the biological roles of Spalt proteins have been characterized in diploid cells engaged in cell proliferation. Here, we address the function of Drosophila Spalt genes in the development of a larval tissue formed by polyploid cells, the prothoracic gland, the cells of which undergo several rounds of DNA replication without mitosis during larval development. We show that prothoracic glands depleted of Spalt expression display severe changes in the size of the nucleolus, the morphology of the nuclear envelope and the disposition of the chromatin within the nucleus, leading to a failure in the synthesis of ecdysone. We propose that loss of ecdysone production in the prothoracic gland of Spalt mutants is primarily caused by defects in nuclear pore complex function that occur as a consequence of faulty interactions between heterochromatic regions and the nuclear envelope.


Assuntos
Proteínas de Drosophila , Ecdisona , Fatores de Transcrição , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ecdisona/metabolismo , Larva/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Membrana Nuclear/metabolismo , Membrana Nuclear/genética , Drosophila/metabolismo , Drosophila/genética , Cromatina/metabolismo , Nucléolo Celular/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/genética , Mutação/genética , Proteínas Repressoras
2.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005395

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.

3.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917015

RESUMO

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Assuntos
Lamina Tipo A , Lamina Tipo B , Lâmina Nuclear , Lâmina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Animais , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos
4.
Adv Exp Med Biol ; 1441: 341-364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884720

RESUMO

Epigenetics is the study of heritable changes to the genome and gene expression patterns that are not caused by direct changes to the DNA sequence. Examples of these changes include posttranslational modifications to DNA-bound histone proteins, DNA methylation, and remodeling of nuclear architecture. Collectively, epigenetic changes provide a layer of regulation that affects transcriptional activity of genes while leaving DNA sequences unaltered. Sequence variants or mutations affecting enzymes responsible for modifying or sensing epigenetic marks have been identified in patients with congenital heart disease (CHD), and small-molecule inhibitors of epigenetic complexes have shown promise as therapies for adult heart diseases. Additionally, transgenic mice harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate aspects of human cardiac disease. Taken together, these findings suggest that the evolving field of epigenetics will inform our understanding of congenital and adult cardiac disease and offer new therapeutic opportunities.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Metilação de DNA/genética , Cardiopatias Congênitas/genética , Histonas/metabolismo , Histonas/genética , Processamento de Proteína Pós-Traducional , Camundongos , Cardiopatias/genética , Cardiopatias/metabolismo , Mutação
5.
J Plant Res ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914831

RESUMO

Heterochromatin is a nuclear area that contains highly condensed and transcriptionally inactive chromatin. Alterations in the organization of heterochromatin are correlated with changes in gene expression and genome stability, which affect various aspects of plant life. Thus, studies of the molecular mechanisms that regulate heterochromatin organization are important for understanding the regulation of plant physiology. Microscopically, heterochromatin can be characterized as chromocenters that are intensely stained with DNA-binding fluorescent dyes. Arabidopsis thaliana exhibits distinctive chromocenters in interphase nuclei, and genetic studies combined with cytological analyses have identified a number of factors that are involved in heterochromatin assembly and organization. In this review, I will summarize the factors involved in the regulation of heterochromatin organization in plants.

6.
Cell Rep ; 43(6): 114284, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38814785

RESUMO

Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.


Assuntos
Matriz Extracelular , Proteínas de Membrana , Miócitos Cardíacos , Membrana Nuclear , Nucleotidiltransferases , Transdução de Sinais , Animais , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Membrana Nuclear/metabolismo , Matriz Extracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Dano ao DNA
7.
New Phytol ; 243(1): 213-228, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715414

RESUMO

Arabidopsis lamin analogs CROWDED NUCLEIs (CRWNs) are necessary to maintain nuclear structure, genome function, and proper plant growth. However, whether and how CRWNs impact reproduction and genome-wide epigenetic modifications is unknown. Here, we investigate the role of CRWNs during the development of gametophytes, seeds, and endosperm, using genomic and epigenomic profiling methods. We observed defects in crwn mutant seeds including seed abortion and reduced germination rate. Quadruple crwn null genotypes were rarely transmitted through gametophytes. Because defects in seeds often stem from abnormal endosperm development, we focused on crwn1 crwn2 (crwn1/2) endosperm. These mutant seeds exhibited enlarged chalazal endosperm cysts and increased expression of stress-related genes and the MADS-box transcription factor PHERES1 and its targets. Previously, it was shown that PHERES1 expression is regulated by H3K27me3 and that CRWN1 interacts with the PRC2 interactor PWO1. Thus, we tested whether crwn1/2 alters H3K27me3 patterns. We observed a mild loss of H3K27me3 at several hundred loci, which differed between endosperm and leaves. These data indicate that CRWNs are necessary to maintain the H3K27me3 landscape, with tissue-specific chromatin and transcriptional consequences.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Endosperma , Regulação da Expressão Gênica de Plantas , Histonas , Mutação , Reprodução , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Histonas/metabolismo , Endosperma/genética , Endosperma/metabolismo , Mutação/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Metilação
8.
Nucleus ; 15(1): 2310452, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38605598

RESUMO

The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.


Assuntos
Membrana Nuclear , Trypanosoma , Humanos , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Trypanosoma/metabolismo
9.
Mol Biol Rep ; 51(1): 556, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642177

RESUMO

BACKGROUND: The Keap1-Nrf2 pathway serves as a central regulator that mediates transcriptional responses to xenobiotic and oxidative stimuli. Recent studies have shown that Keap1 and Nrf2 can regulate transcripts beyond antioxidant and detoxifying genes, yet the underlying mechanisms remain unclear. Our research has uncovered that Drosophila Keap1 (dKeap1) and Nrf2 (CncC) proteins can control high-order chromatin structure, including heterochromatin. METHODS AND RESULTS: In this study, we identified the molecular interaction between dKeap1 and lamin Dm0, the Drosophila B-type lamin responsible for the architecture of nuclear lamina and chromatin. Ectopic expression of dKeap1 led to an ectopic localization of lamin to the intra-nuclear area, corelated with the spreading of the heterochromatin marker H3K9me2 into euchromatin regions. Additionally, mis-regulated dKeap1 disrupted the morphology of the nuclear lamina. Knocking down of dKeap1 partially rescued the lethality induced by lamin overexpression, suggesting their genetic interaction during development. CONCLUSIONS: The discovered dKeap1-lamin interaction suggests a novel role for the Keap1 oxidative/xenobiotic response factor in regulating chromatin architecture.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Laminas , Lâmina Nuclear , Xenobióticos , Animais , Cromatina/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Laminas/genética , Laminas/química , Laminas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Xenobióticos/metabolismo , Núcleo Celular/metabolismo , Lâmina Nuclear/metabolismo
10.
Genome Biol ; 25(1): 77, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519987

RESUMO

BACKGROUND: B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. RESULTS: Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. CONCLUSIONS: Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.


Assuntos
Cromatina , Lamina Tipo B , Animais , Lamina Tipo B/genética , Heterocromatina , Hibridização in Situ Fluorescente , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminas , Expressão Gênica , Mamíferos/genética
11.
Cells ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474363

RESUMO

Lamins, the nuclear intermediate filaments, are important regulators of nuclear structural integrity as well as nuclear functional processes such as DNA transcription, replication and repair, and epigenetic regulations. A portion of phosphorylated lamin A/C localizes to the nuclear interior in interphase, forming a lamin A/C pool with specific properties and distinct functions. Nucleoplasmic lamin A/C molecular functions are mainly dependent on its binding partners; therefore, revealing new interactions could give us new clues on the lamin A/C mechanism of action. In the present study, we show that lamin A/C interacts with nuclear phosphoinositides (PIPs), and with nuclear myosin I (NM1). Both NM1 and nuclear PIPs have been previously reported as important regulators of gene expression and DNA damage/repair. Furthermore, phosphorylated lamin A/C forms a complex with NM1 in a phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent manner in the nuclear interior. Taken together, our study reveals a previously unidentified interaction between phosphorylated lamin A/C, NM1, and PI(4,5)P2 and suggests new possible ways of nucleoplasmic lamin A/C regulation, function, and importance for the formation of functional nuclear microdomains.


Assuntos
Núcleo Celular , Lamina Tipo A , Núcleo Celular/metabolismo , Filamentos Intermediários/metabolismo , Interfase , Lamina Tipo A/metabolismo , Humanos , Linhagem Celular Tumoral
12.
Cell Mol Life Sci ; 81(1): 141, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485766

RESUMO

Human papillomavirus (HPV) infection is a primary cause of cervical and head-and-neck cancers. The HPV genome enters the nucleus during mitosis when the nuclear envelope disassembles. Given that lamins maintain nuclear integrity during interphase, we asked to what extent their loss would affect early HPV infection. To address this question, we infected human cervical cancer cells and keratinocytes lacking the major lamins with a HPV16 pseudovirus (HP-PsV) encoding an EGFP reporter. We found that a sustained reduction or complete loss of lamin B1 significantly increased HP-PsV infection rate. A corresponding greater nuclear HP-PsV load in LMNB1 knockout cells was directly related to their prolonged mitotic window and extensive nuclear rupture propensity. Despite the increased HP-PsV presence, EGFP transcript levels remained virtually unchanged, indicating an additional defect in protein turnover. Further investigation revealed that LMNB1 knockout led to a substantial decrease in autophagic capacity, possibly linked to the persistent activation of cGAS by cytoplasmic chromatin exposure. Thus, the attrition of lamin B1 increases nuclear perviousness and attenuates autophagic capacity, creating an environment conducive to unrestrained accumulation of HPV capsids. Our identification of lower lamin B1 levels and nuclear BAF foci in the basal epithelial layer of several human cervix samples suggests that this pathway may contribute to an increased individual susceptibility to HPV infection.


Assuntos
Lamina Tipo B , Infecções por Papillomavirus , Feminino , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Infecções por Papillomavirus/genética , Membrana Nuclear/metabolismo , Mitose , Cromossomos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo
13.
Eur J Cell Biol ; 103(2): 151394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38340500

RESUMO

The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.


Assuntos
Neoplasias , Membrana Nuclear , Humanos , Membrana Nuclear/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais
14.
Acta Neuropathol Commun ; 11(1): 196, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087392

RESUMO

Tau (Tubulin associated unit) protein is a major hallmark of Alzheimer's disease (AD) and tauopathies. Tau is predominantly an axonal protein with a crucial role in the stabilization and dynamics of the microtubules. Since the discovery of Tau protein in 1975, research efforts were concentrated on the pathophysiological role of Tau protein in the context of the microtubules. Although, for more than three decades, different localizations of Tau protein have been discovered e.g., in the nuclear compartments. Discovery of the role of Tau protein in various cellular compartments especially in the nucleus opens up a new fold of complexity in tauopathies. Data from cellular models, animal models, and the human brain indicate that nuclear Tau is crucial for genome stability and to cope with cellular distress. Moreover, it's nature of nuclear translocation, its interactions with the nuclear DNA/RNA and proteins suggest it could play multiple roles in the nucleus. To comprehend Tau pathophysiology and efficient Tau-based therapies, there is an urgent need to understand whole repertoire of Tau species (nuclear and cytoplasmic) and their functional relevance. To complete the map of Tau repertoire, understanding of various species of Tau in the nucleus and cytoplasm, identification if specific transcripts of Tau, isoforms and post-translational modifications could foretell Tau's localizations and functions, and how they are modified in neurodegenerative diseases like AD, is urgently required. In this review, we explore the nuclear face of Tau protein, its nuclear localizations and functions and its linkage with Alzheimer's disease.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Tauopatias/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
15.
FEBS Lett ; 597(22): 2806-2822, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953467

RESUMO

Lamina-associated domains are large regions of heterochromatin positioned at the nuclear periphery. These domains have been implicated in gene repression, especially in the context of development. In mammals, LAD organization is dependent on nuclear lamins, inner nuclear membrane proteins, and chromatin state. In addition, chromatin readers and modifier proteins have been implicated in this organization, potentially serving as molecular tethers that interact with both nuclear envelope proteins and chromatin. More recent studies have focused on teasing apart the rules that govern dynamic LAD organization and how LAD organization, in turn, relates to gene regulation and overall 3D genome organization. This review highlights recent studies in mammalian cells uncovering factors that instruct the choreography of LAD organization, re-organization, and dynamics at the nuclear lamina, including LAD dynamics in interphase and through mitotic exit, when LAD organization is re-established, as well as intra-LAD subdomain variations.


Assuntos
Núcleo Celular , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Cromatina/genética , Cromatina/metabolismo , Membrana Nuclear , Heterocromatina/genética , Heterocromatina/metabolismo , Mamíferos/genética
16.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958755

RESUMO

Heterochromatin and euchromatin form different spatial compartments in the interphase nucleus, with heterochromatin being localized mainly at the nuclear periphery. The mechanisms responsible for peripheral localization of heterochromatin are still not fully understood. The nuclear lamina and nuclear pore complexes were obvious candidates for the role of heterochromatin binders. This review is focused on recent studies showing that heterochromatin interactions with the nuclear lamina and nuclear pore complexes maintain its peripheral localization. Differences in chromatin interactions with the nuclear envelope in cell populations and in individual cells are also discussed.


Assuntos
Lâmina Nuclear , Poro Nuclear , Heterocromatina , Cromatina , Núcleo Celular , Membrana Nuclear
17.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003233

RESUMO

Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at birth. Trisomies are characterized by alterations in gene expression level, not exclusively on the trisomic chromosome, but throughout the genome. Here, we applied the high-throughput chromosome conformation capture technique (Hi-C) to study chromatin 3D structure in human chorion cells carrying either additional chromosome 13 (Patau syndrome) or chromosome 16 and in cultured fibroblasts with extra chromosome 18 (Edwards syndrome). The presence of extra chromosomes results in systematic changes of contact frequencies between small and large chromosomes. Analyzing the behavior of individual chromosomes, we found that a limited number of chromosomes change their contact patterns stochastically in trisomic cells and that it could be associated with lamina-associated domains (LAD) and gene content. For trisomy 13 and 18, but not for trisomy 16, the proportion of compacted loci on a chromosome is correlated with LAD content. We also found that regions of the genome that become more compact in trisomic cells are enriched in housekeeping genes, indicating a possible decrease in chromatin accessibility and transcription level of these genes. These results provide a framework for understanding the mechanisms of pan-genome transcription dysregulation in trisomies in the context of chromatin spatial organization.


Assuntos
Núcleo Celular , Trissomia , Recém-Nascido , Humanos , Trissomia/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Testes Genéticos , Síndrome da Trissomia do Cromossomo 13/genética
18.
BMC Med Genomics ; 16(1): 229, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784143

RESUMO

LMNA gene encodes lamin A/C protein which participates in the construction of nuclear lamina, the mutations of LMNA result in a wide variety of diseases known as laminopathies. LMNA-related dilated cardiomyopathy(LMNA-DCM) is one of the more common laminopathy which characterized by progressive heart failure and arrhythmia. However, the mutation features of LMNA-DCM are yet to be elucidated. Herein we described a dilated cardiomyopathy family carrying novel variant c.467G > C(p.Arg156Pro) of LMNA as heterozygous pathogenic variant identified by whole-exome sequencing. With the help of Alphafold2, we predicted mutant protein structure and found an interrupted α-helix region in lamin A/C. In the analysis of 49 confirmed pathogenic missense of laminopathies, Chi-square test showed the DCM phenotype was related to the α-helix region mutation (p < 0.017). After screening the differentially expressed genes (DEGs) in both mice models and human patients in Gene Expression Omnibus database, we found the variation of α-helix-coding region in LMNA caused abnormal transcriptomic features in cell migration, collagen-containing extracellular matrix, and PI3K-Akt signaling pathway. Subsequently we constructed (TF)-mRNA-microRNA (miRNA) regulatory network and identified 7 key genes (FMOD, CYP1B1, CA3, F2RL1, HAPLIN1, SNAP91, and KANSL1) as potential biomarkers or therapeutic targets in LMNA-DCM patients.


Assuntos
Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosfatidilinositol 3-Quinases/genética , Conformação Proteica em alfa-Hélice , Arritmias Cardíacas , Mutação
19.
FEBS Lett ; 597(20): 2501-2518, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37789516

RESUMO

One of the remarkable features of eukaryotes is the nucleus, delimited by the nuclear envelope (NE), a complex structure and home to the nuclear lamina and nuclear pore complex (NPC). For decades, these structures were believed to be mainly architectural elements and, in the case of the NPC, simply facilitating nucleocytoplasmic trafficking. More recently, the critical roles of the lamina, NPC and other NE constituents in genome organisation, maintaining chromosomal domains and regulating gene expression have been recognised. Importantly, mutations in genes encoding lamina and NPC components lead to pathogenesis in humans, while pathogenic protozoa disrupt the progression of normal development and expression of pathogenesis-related genes. Here, we review features of the lamina and NPC across eukaryotes and discuss how these elements are structured in trypanosomes, protozoa of high medical and veterinary importance, highlighting lineage-specific and conserved aspects of nuclear organisation.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Trypanosoma , Humanos , Transporte Ativo do Núcleo Celular/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Membrana Nuclear , Poro Nuclear/genética , Poro Nuclear/metabolismo , Trypanosoma/genética , Trypanosoma/metabolismo
20.
FEBS Lett ; 597(22): 2823-2832, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37846646

RESUMO

The concept of mechanotransduction to the nucleus through a direct force transmission mechanism has fascinated cell biologists for decades. Central to such a mechanism is the linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope to couple the cytoplasmic cytoskeleton to the nuclear lamina. In reality, there is not one LINC complex identity, but instead, a family of protein configurations of varied composition that exert both shared and unique functions. Regulated expression of LINC complex components, splice variants, and mechanoresponsive protein turnover mechanisms together shape the complement of LINC complex forms present in a given cell type. Disrupting specific gene(s) encoding LINC complex components therefore gives rise to a range of organismal defects. Moreover, evidence suggests that the mechanical environment remodels LINC complexes, providing a feedback mechanism by which cellular context influences the integration of the nucleus into the cytoskeleton. In particular, evidence for crosstalk between the nuclear and cytoplasmic intermediate filament networks communicated through the LINC complex represents an emerging theme in this active area of ongoing investigation.


Assuntos
Citoesqueleto , Mecanotransdução Celular , Mecanotransdução Celular/fisiologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Matriz Nuclear/metabolismo , Membrana Nuclear , Núcleo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA