Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.059
Filtrar
1.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095183

RESUMO

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Assuntos
Poluentes Atmosféricos , Sulfeto de Hidrogênio , Modelos Químicos , Sulfeto de Hidrogênio/química , Poluentes Atmosféricos/química , Reação de Cicloadição , Atmosfera/química , Óxidos de Enxofre/química , Cinética , Enxofre/química
2.
Adv Sci (Weinh) ; : e2406861, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116315

RESUMO

Understanding the ice nucleation mechanism in the catalyst layers (CLs) of proton exchange membrane (PEM) fuel cells and inhibiting icing by designing the CLs can optimize the cold start strategies, which can enhance the performance of PEM fuel cells. Herein, mitigating the structural matching and templating effects by adjusting the surface morphology and wettability can inhibit icing on the platinum (Pt) catalyst surface effectively. The Pt(211) surface can inhibit icing because the atomic spacing of (211) crystalline surface is much larger than the characteristic distance of ice crystal, thereby mitigating the structural matching effects. A water overlayer on the Pt surface induced by the strong attraction of Pt can act as a template for ice layers and plays an important role in the icing process. Buckling of water overlayer due to the larger atomic spacing of (211) crystalline surface mitigates the templating effect and inhibits icing. Moreover, the water overlayer on the hydrophobic Pt(211) surface with fewer water molecules also mitigates the templating effect, which makes ice nucleation more difficult than homogeneous nucleation. These findings reveal the ice nucleation mechanisms on the Pt catalyst surface from the molecular level and are valuable for catalyst designs to inhibit icing in CL.

3.
Adv Sci (Weinh) ; : e2404916, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159070

RESUMO

Understanding the mechanisms underlying amyloid-ß (Aß) aggregation is pivotal in the context of Alzheimer's disease. This study aims to elucidate the secondary nucleation process of Aß42 peptides by combining experimental and computational methods. Using a newly developed nanopipette-based amyloid seeding and translocation assay, confocal fluorescence spectroscopy, and molecular dynamics simulations, the influence of the seed properties on Aß aggregation is investigated. Both fragmented and unfragmented seeds played distinct roles in the formation of oligomers, with fragmented seeds facilitating the formation of larger aggregates early in the incubation phase. The results show that secondary nucleation leads to the formation of oligomers of various sizes and structures as well as larger fibrils structured in ß-sheets. From these findings a mechanism of secondary nucleation involving two types of aggregate populations, one released and one growing on the mother fiber is proposed.

4.
ACS Nano ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136274

RESUMO

The development of Li metal batteries requires a detailed understanding of complex nucleation and growth processes during electrodeposition. In situ techniques offer a framework to study these phenomena by visualizing structural dynamics that can inform the design of uniform plating morphologies. Herein, we combine scanning electrochemical cell microscopy (SECCM) with in situ interference reflection microscopy (IRM) for a comprehensive investigation of Li nucleation and growth on lithiophilic thin-film gold electrodes. This multimicroscopy approach enables nanoscale spatiotemporal monitoring of Li plating and stripping, along with high-throughput capabilities for screening experimental conditions. We reveal the accumulation of inactive Li nanoparticles in specific electrode regions, yet these regions remain functional in subsequent plating cycles, suggesting that growth does not preferentially occur from particle tips. Optical-electrochemical correlations enabled nanoscale mapping of Coulombic Efficiency (CE), showing that regions prone to inactive Li accumulation require more cycles to achieve higher CE. We demonstrate that electrochemical nucleation time (tnuc) is a lagging indicator of nucleation and introduce an optical method to determine tnuc at earlier stages with nanoscale resolution. Plating at higher current densities yielded smaller Li nanoparticles and increased areal density, and was not affected by heterogeneous topographical features, being potentially beneficial to achieve a more uniform plating at longer time scales. These results enhance the understanding of Li plating on lithiophilic surfaces and offer promising strategies for uniform nucleation and growth. Our multimicroscopy approach has broad applicability to study nanoscale metal plating and stripping phenomena, with relevance in the battery and electroplating fields.

5.
Angew Chem Int Ed Engl ; : e202409992, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129217

RESUMO

The concept of a lithiophilic electrode proves inadequate in describing carbon-based electrode materials due to their substantial mismatch in surface energy with lithium metal. However, their notable capacity for lithium chemisorption can increase active lithium concentration required for nucleation and growth, thereby enhancing the electrochemical performance of lithium metal anodes (LMAs). In this study, we elucidate the effects of the supersaturated electrode which has high active lithium capacity around equilibrium lithium potential on LMAs through an in-depth electrochemical comparison using two distinct carbon electrode platforms with differing carbon structures but similar two-dimensional morphologies. In the supersaturated electrode, both the dynamics and thermodynamic states involved in lithium nucleation and growth mechanisms are significantly improved, particularly under continuous current supply conditions. Furthermore, the chemical structures of the solid-electrolyte-interface layers (SEIs) are greatly influenced by the elevated surface lithium concentration environment, resulting in the formation of more conductive lithium-rich SEI layers. The improved dynamics and thermodynamics of surface lithium, coupled with the formation of enhanced SEI layers, contribute to higher power capabilities, enhanced Coulombic efficiencies, and improved cycling performances of LMAs. These results provide new insight into understanding the enhancements in heterogeneous lithium nucleation and growth kinetics on the supersaturated electrode.

6.
Cryobiology ; : 104954, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151874

RESUMO

Present study analyzed four cations (K+, Ca2+, Mg2+, Fe2+) in leachate from freeze-injured spinach (Spinacia oleracea L. 'Reflect') leaves exposed for four freezing-durations (FDs) (0.5, 3.0, 5.5, 10.5 h) at -4.8°C. Comparison of electrolyte leakage from right-after-thaw with that after 6-d recovery revealed that injury at 0.5 or 3 h FDs was recoverable but irreversible at 5.5 or 10.5 h FDs. Data suggests leakage of K+, most abundant cation in leachate, can serve as proxy for total electrolyte-leakage in determining plant freezing-tolerance and an ionic marker discerning moderate vs. severe injury. Quantitative correspondence between Ca2+- and K+-leakage supports earlier proposition that leaked K+ induces loss of membrane-Ca2+, which, in turn, promotes further K+-leakage due to weakened membrane. Reduced / undetectable Fe2+ in leachate at longer FDs suggests activation of Fenton reaction converting soluble Fe2+ into insoluble Fe3+. Enhanced Mg2+-leakage at greater freeze-injury suggests structural/functional impairment of chlorophyll / chloroplast complex.

7.
ACS Nano ; 18(32): 21184-21197, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094098

RESUMO

Rechargeable aqueous zinc-ion batteries (AZIBs) are gaining recognition as promising next-generation energy storage solution, due to their intrinsic safety and low cost. Nevertheless, the advancement of AZIBs is greatly limited by the abnormal growth of zinc dendrites during cycling. Electrolyte additives are effective at suppressing zinc dendrites, but there is currently no effective additive screening criterion. Herein, we propose employing the interfacial electrostatic adsorption strength of zinc ions for the initial screening of additives. Subsequently, dendrite-free plating is achieved by employing the anionic surfactant sodium dodecyl benzenesulfonate (SDBS) to enhance electrostatic adsorption. The cycled zinc anode exhibited a dense plating morphology and a high (002) orientation (I002/I101 = 22). The Zn||MnO2 full cell with SDBS exhibited a capacity retention of 85% after 1000 cycles at 1 A g-1. Furthermore, an instantaneous nucleation model and continuous nucleation model (CNM) are constructed to reveal the microscale plating/stripping dynamics under the scenarios of weak adsorption and strong adsorption. The CNM accurately explains the self-optimizing reconstruction of electrodes resulting from enhanced electrostatic adsorption. Our exploration was extended to other anionic surfactants (sodium dodecyl sulfate and disodium laureiminodipropionate), confirming the effectiveness of strong electrostatic adsorption in the screening of electrolyte additives.

8.
Small ; : e2401674, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077956

RESUMO

Electrochemical growth of metal nanocrystals is pivotal for material synthesis, processing, and resource recovery. Understanding the heterogeneous interface between electrolyte and electrode is crucial for nanocrystal nucleation, but the influence of this interaction is still poorly understood. This study employs advanced in situ measurements to investigate the heterogeneous nucleation of metals on solid surfaces. By observing the copper nanocrystal electrodeposition, an interphase interaction-induced nucleation mechanism highly dependent on substrate surface energy is uncovered. It shows that a high-energy (HE) electrode tended to form a polycrystalline structure, while a low-energy (LE) electrode induced a monocrystalline structure. Raman and electrochemical characterizations confirmed that HE interface enhances the interphase interaction, reducing the nucleation barrier for the sturdy nanostructures. This leads to a 30.92-52.21% reduction in the crystal layer thickness and a 19.18-31.78% increase in the charge transfer capability, promoting the formation of a uniform and compact film. The structural compactness of the early nucleated crystals enhances the deposit stability for long-duration electrodeposition. This research not only inspires comprehension of physicochemical processes correlated with heterogeneous nucleation, but also paves a new avenue for high-quality synthesis and efficient recovery of metallic nanomaterials.

9.
Bioessays ; : e2400117, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044599

RESUMO

In cells, microtubules (MTs) assemble from α/ß-tubulin subunits at nucleation sites containing the γ-tubulin ring complex (γ-TuRC). Within the γ-TuRC, exposed γ-tubulin molecules act as templates for MT assembly by interacting with α/ß-tubulin. The vertebrate γ-TuRC is scaffolded by γ-tubulin-interacting proteins GCP2-6 arranged in a specific order. Interestingly, the γ-tubulin molecules in the γ-TuRC deviate from the cylindrical geometry of MTs, raising the question of how the γ-TuRC structure changes during MT nucleation. Recent studies on the structure of the vertebrate γ-TuRC attached to the end of MTs came to varying conclusions. In vitro assembly of MTs, facilitated by an α-tubulin mutant, resulted in a closed, cylindrical γ-TuRC showing canonical interactions between all γ-tubulin molecules and α/ß-tubulin subunits. Conversely, native MTs formed in a frog extract were capped by a partially closed γ-TuRC, with some γ-tubulin molecules failing to align with α/ß-tubulin. This review discusses these outcomes, along with the broader implications.

10.
Adv Mater ; : e2403413, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011771

RESUMO

The rapid development of the Internet of Things (IoT) has accelerated the advancement of indoor photovoltaics (IPVs) that directly power wireless IoT devices. The interest in lead-free perovskites for IPVs stems from their similar optoelectronic properties to high-performance lead halide perovskites, but without concerns about toxic lead leakage in indoor environments. However, currently prevalent lead-free perovskite IPVs, especially tin halide perovskites (THPs), still exhibit inferior performance, arising from their uncontrollable crystallization. Here, a novel adhesive bonding strategy is proposed for precisely regulating heterogeneous nucleation kinetics of THPs by introducing alkali metal fluorides. These ionic adhesives boost the work of adhesion at the buried interface between substrates and perovskite film, subsequently reducing the contact angle and energy barrier for heterogeneous nucleation, resulting in high-quality THP films. The resulting THP solar cells achieve an efficiency of 20.12% under indoor illumination at 1000 lux, exceeding all types of lead-free perovskite IPVs and successfully powering radio frequency identification-based sensors.

11.
bioRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39026726

RESUMO

Cells generate a wide range of actin-based membrane protrusions for various cell behaviors. These protrusions are organized by different actin nucleation promoting factors. For example, N-WASP controls finger-like filopodia, whereas the WAVE complex controls sheet-like lamellipodia. These different membrane morphologies likely reflect different patterns of nucleator self-organization. N-WASP phase separation has been successfully studied through biochemical reconstitutions, but how the WAVE complex self-organizes to instruct lamellipodia is unknown. Because WAVE complex self-organization has proven refractory to cell-free studies, we leverage in vivo biochemical approaches to investigate WAVE complex organization within its native cellular context. With single molecule tracking and molecular counting, we show that the WAVE complex forms highly regular multilayered linear arrays at the plasma membrane that are reminiscent of a microtubule-like organization. Similar to the organization of microtubule protofilaments in a curved array, membrane curvature is both necessary and sufficient for formation of these WAVE complex linear arrays, though actin polymerization is not. This dependency on negative membrane curvature could explain both the templating of lamellipodia and their emergent behaviors, including barrier avoidance. Our data uncover the key biophysical properties of mesoscale WAVE complex patterning and highlight an integral relationship between NPF self-organization and cell morphogenesis.

12.
J Colloid Interface Sci ; 676: 569-581, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39053405

RESUMO

Liquid-liquid phase separation is a key phenomenon in the formation of membrane-less structures within the cell, appearing as liquid biomolecular condensates. Protein condensates are the most studied for their biological relevance, and their tendency to evolve, resulting in the formation of aggregates with a high level of order called amyloid. In this study, it is demonstrated that Human Insulin forms micrometric, round amyloid-like structures at room temperature within sub-microliter scale aqueous compartments. These distinctive particles feature a solid core enveloped by a fluid-like corona and form at the interface between the aqueous compartment and the glass coverslip upon which they are cast. Quantitative fluorescence microscopy is used to study in real-time the formation of amyloid-like superstructures. Their formation results driven by liquid-liquid phase separation process that arises from spatially heterogeneous distribution of nuclei at the glass-water interface. The proposed experimental setup allows modifying the surface-to-volume ratio of the aqueous compartments, which affects the aggregation rate and particle size, while also inducing fine alterations in the molecular structures of the final assemblies. These findings enhance the understanding of the factors governing amyloid structure formation, shedding light on the catalytic role of surfaces in this process.

13.
Sci Total Environ ; 948: 174829, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034012

RESUMO

Dust storms have great impacts on air quality and climate. Dust can influence cloud microphysical properties and determine their radiative forcing and precipitation. Asian dust storms (ADS) are important sources of global aerosol. However, the physiochemical characteristics of dust from ADS at a single particle level are less understood, and the exact particles that can serve as ice nucleating particles (INPs) remain unclear. Here, we present the physicochemical properties and ice nucleation ability of dust particles collected in Beijing during two major ADS in March 2021. The particles from two ADS were classified into Illite, Kaolinite, Feldspar, Quartz, Chlorite, Mixed-dust, and Non-dust particles, which contributed 28.6 % ± 3.3 %, 20.0 % ± 3.9 %, 12.3 % ± 2.3 %, 11.1 % ± 2.8 %, 9.8 % ± 0.8 %, 13.7 % ± 1.8 %, and 4.4 % ± 1.7 % in number, respectively. On average, the ADS particles formed ice crystals via deposition ice nucleation from relative humidity with respect to ice (RHice) of 112 % ± 1 % at 250 K to 154 % ± 15 % RHice at 205 K. Part of the samples also formed ice via immersion freezing between 230 K and 250 K. Among the 149 identified INPs, Clay-like particles (Chlorite, Illite, and Kaolinite) contributed 71.1 % ± 6.2 % in number and followed by Mixed-dust-like particles (16.9 % ± 8.7 %) and Feldspar-like particles (10.4 % ± 6.3 %). Enrichment factor of each particle type in INPs is calculated as the ratio of its number fractions in INPs and the aerosol population. It ranges from 0.6 ± 0.7 to 1.3 ± 2.2. The contribution of each particle type to INP was correlated with its fraction in the population. These results imply that each particle type can serve as INP. Clay-like particles are the dominant INPs during the ADS. We conducted ice nucleation kinetic analysis and provided parameterizations of heterogeneous ice nucleation rate coefficient and contact angle for ADS. These parameterizations can be used in the modeling study to evaluate the impact of ADS in atmospheric ice crystal formation in clouds.

14.
Water Res ; 261: 122021, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986280

RESUMO

Membrane distillation (MD) equipped with omniphobic (non-wetting) membranes has found a niche in water reclamation from hypersaline industrial wastewater. Here, we examined the efficacy of non-fluorinated materials as surface coating agents for omniphobic MD membrane fabrication, and identified necessary mechanisms to attain a maximized wetting resistance using fluorine-free materials. We first prepared MD membranes with different surface chemistries using a series of linear alkylsilanes and polydimethylsiloxane (PDMS) as representative fluorine-free, low surface energy materials. Membranes modified with a longer chain alkylsilane exhibited a lower surface energy and demonstrated a greater wetting resistance in direct contact MD experiments using feedwaters of various surface tensions. Despite the nearly identical surface energy measured for the longest alkylsilane and PDMS, PDMS-modified membrane exhibited an extended antiwetting performance as compared to the membrane treated with the longest alkylsilane. To elucidate the source of the distinctive wetting resistance, we examined the nucleation and condensation kinetics on the surfaces with the different surface chemistries via environmental scanning electron microscopy. Our analysis suggests that the membranes treated with long chain alkylsilanes contain surface defects (i.e., hydrophilic regions) whereas the high mobility of the PDMS effectively minimizes the defect exposure, slowing down the condensation and subsequent surface wetting.


Assuntos
Águas Residuárias , Purificação da Água , Molhabilidade , Águas Residuárias/química , Purificação da Água/métodos , Dimetilpolisiloxanos/química , Flúor/química , Solução Salina/química , Interações Hidrofóbicas e Hidrofílicas , Destilação
15.
Anal Bioanal Chem ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031229

RESUMO

The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40. Our findings reveal the significant role of sulfate ions in the growth of adeninediium sulfate clusters, which are the precursors to the formation of single crystals. Specifically, sulfate ions stabilize adenine clusters at the 1:1 ratio. In contrast, guanine sulfate forms smaller clusters with varied ratios, which become stable as they approach the 1:2 ratio. The nucleation size is predicted to be between n = 8 and 14, correlating well with the unit cell dimensions of adenine crystals. This correlation suggests that IMS-MS can identify critical nucleation sizes and provide valuable structural information consistent with established crystallographic data. We also discuss the strengths and limitations of IMS-MS in this context. IMS-MS offers rapid and robust experimental protocols, making it a valuable tool for studying the effects of various additives on the assembly of small molecules. Additionally, it aids in elucidating nucleation processes and the growth of different crystal polymorphs.

16.
ACS Nano ; 18(29): 19314-19323, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39001854

RESUMO

While the molten salt-catalyzed chemical vapor deposition (CVD) technique is recognized for its effectiveness in producing large-area transition metal chalcogenides, understanding their growth mechanisms involving alkali metals remains a challenge. Here, we investigate the kinetics and mechanism of sodium-catalyzed molybdenum disulfide (MoS2) growth and etching through image analysis conducted using an integrated CVD microscope. Sodium droplets, agglomerated via the thermal decomposition of the sodium cholate dispersant, catalyze the precipitation of supersaturated MoS2 laminates and induce growth despite fragmentation during this process. Triangular MoS2 crystals display a distinct self-exhausting exponential behavior and slow growth of thermodynamically favorable crystallographic faces, exhibiting a sulfur-dominant pressure. The growth and etching processes are facilitated by the scooting of sodium droplets along grain edges, displaying comparable rates. Leveraging these kinetics makes it possible to engineer atypical MoS2 shapes. This combined microscope not only enhances the understanding of growth mechanisms but also contributes to the facile development of next-generation nanomaterials.

17.
Proc Natl Acad Sci U S A ; 121(31): e2404595121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047040

RESUMO

New particle formation (NPF) substantially affects the global radiation balance and climate. Iodic acid (IA) is a key marine NPF driver that recently has also been detected inland. However, its impact on continental particle nucleation remains unclear. Here, we provide molecular-level evidence that IA greatly facilitates clustering of two typical land-based nucleating precursors: dimethylamine (DMA) and sulfuric acid (SA), thereby enhancing particle nucleation. Incorporating this mechanism into an atmospheric chemical transport model, we show that IA-induced enhancement could realize an increase of over 20% in the SA-DMA nucleation rate in iodine-rich regions of China. With declining anthropogenic pollution driven by carbon neutrality and clean air policies in China, IA could enhance nucleation rates by 1.5 to 50 times by 2060. Our results demonstrate the overlooked key role of IA in continental NPF nucleation and highlight the necessity for considering synergistic SA-IA-DMA nucleation in atmospheric modeling for correct representation of the climatic impacts of aerosols.

18.
Materials (Basel) ; 17(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063714

RESUMO

The aim of this study was to investigate the effects of TiO2/CaO addition on the crystallization and flexural strength of leucite glass-ceramics (GC). Synthesis of translucent and high strength GCs is important for the development of aesthetic and durable dental restorations. To achieve this, experimental aluminosilicate glasses (1-3 mol% TiO2 and CaO (B1, B2, B3)) were melted in a furnace to produce glasses. Glasses were ball milled, screened and heat treated via crystallization heat treatments, and characterized using XRD, differential scanning calorimetry, dilatometry, SEM and biaxial flexural strength (BFS). Increasing nucleation hold time (1-3 h) led to a reduction in crystallite number for B2 and B3 GC, and significant differences in leucite crystal size at differing nucleation holds within and across test groups (p < 0.05). A high area fraction of leucite crystals (55.1-60.8%) was found in the GC, with no matrix microcracking. Changes in the crystal morphology were found with higher TiO2/CaO addition. Mean BFS of the GC were 211.2-234.8 MPa, with significantly higher Weibull modulus (m = 18.9) for B3 GC. Novel glass compositions enriched with TiO2/CaO led to crystallization of leucite GC of high aspect ratio, with high BFS and reliability. The study's findings suggest a potential high performance translucent leucite GC for use in the construction of dental restorations.

19.
Food Res Int ; 191: 114678, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059939

RESUMO

From uncorking the bottle to the bursting of bubbles in the glass, the science behind the tasting of champagne and other sparkling wine is both traditional and at the forefront of modern developments. The strong interaction between the various parameters at play in a bottle and in a glass of sparkling wine has been the subject of study for around two decades. Indeed, sparkling wine tasting is often seen as the pinnacle of glamor and frivolity for most people, but it should also be considered as a fantastic playground for chemists and physicists to explore the subtle science behind this centuries-old drink, whose prestige today goes well beyond the borders of Champagne and France. This article offers an overview of the physicochemical processes that mark a tasting of champagne or sparkling wine in the broad sense, from the cork popping out of the bottleneck to the formation and bursting of bubbles in your glass, including the choice of the glass and how to serve and drink the wine correctly.


Assuntos
Paladar , Vinho , Vinho/análise , Humanos , Manipulação de Alimentos/métodos
20.
Small ; : e2403438, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978442

RESUMO

The role of macromolecule-macromolecule and macromolecule-H2O interactions and the resulting perturbation of the H-bonded network of H2O in the liquid-liquid phase separation (LLPS) process of biopolymers are well-known. However, the potential of the hydrated state of supramolecular structures (non-covalent analogs of macromolecules) of synthetic molecules is not widely recognized for playing a similar role in the LLPS process. Herein, LLPS occurred during the co-assembly of hydrated supramolecular vesicles (bolaamphiphile, BA1) with a net positive charge (zeta potential, ζ = +60 ± 2 mV) and a dianionic chiral molecule (disodium l-[+]-tartrate) is reported. As inferred from cryo-transmission electron microscopy (TEM), the LLPS-formed droplets serve as the nucleation precursors, dictating the structure and properties of the co-assembly. The co-assembled structure formed by LLPS effectively integrates the counter anion's asymmetry, resulting in the formation of ultrathin free-standing, chiral 2D crystalline sheets. The significance of the hydrated state of supramolecular structures in influencing LLPS is unraveled through studies extended to a less hydrated supramolecular structure of a comparable system (BA2). The role of LLPS in modulating the hydrophobic interaction in water paves the way for the creation of advanced functional materials in an aqueous environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA