Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell Pediatr ; 11(1): 8, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264482

RESUMO

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by loss of tolerance to nuclear antigens. The formation of autoantibodies and the deposition of immune complexes trigger inflammatory tissue damage that can affect any part of the body. In most cases, SLE is a complex disease involving multiple genetic and environmental factors. Despite advances in the treatment of SLE, there is currently no cure for SLE and patients are treated with immunosuppressive drugs with significant side effects. The elucidation of rare monogenic forms of SLE has provided invaluable insights into the molecular mechanisms underlying systemic autoimmunity. Harnessing this knowledge will facilitate the development of more refined and reliable biomarker profiles for diagnosis, therapeutic monitoring, and outcome prediction, and guide the development of novel targeted therapies not only for monogenic lupus, but also for complex SLE.

2.
Molecules ; 29(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274969

RESUMO

This review article is focused on the progress made in the synthesis of 5'-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties. The main chemical approaches to the synthesis of NTPαXYs are analyzed and systematized here. Using the data presented here on the diversity of NTPαXYs and their synthesis protocols, it is possible to select an appropriate method for obtaining a desired α-phosphate mimetic. Triphosphates' substrate properties toward nucleic acid metabolism enzymes are highlighted too. We reviewed some of the most prominent applications of NTPαXYs including the use of modified dNTPs in studies on mechanisms of action of polymerases or in systematic evolution of ligands by exponential enrichment (SELEX). The presence of heteroatoms such as sulfur, selenium, or boron in α-phosphate makes modified triphosphates nuclease resistant. The most distinctive feature of NTPαXYs is that they can be recognized by polymerases. As a result, S-, Se-, or BH3-modified phosphate residues can be incorporated into DNA or RNA. This property has made NTPαXYs a multifunctional tool in molecular biology. This review will be of interest to synthetic chemists, biochemists, biotechnologists, or biologists engaged in basic or applied research.


Assuntos
Fosfatos , Fosfatos/química , Fosfatos/síntese química , Nucleosídeos/química , Nucleosídeos/síntese química , Polifosfatos/química , Nucleotídeos/química , Nucleotídeos/síntese química
3.
Cancer Genet ; 262-263: 80-90, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134616

RESUMO

Telomere dysfunction is one of the hallmarks of cancer, which puts telomere-associated genes in a prominent position in oncology. The CTC1-STN1-TEN1 (CST) complex is vital for telomere maintenance and participates in several steps of DNA metabolism, such as repair and replication, essential functions for malignant cells. Despite this, little is known about these genes in cancer biology. Here, using bioinformatics tools, we performed a study in 33 cancer types and over 10,000 TCGA samples analyzing the role of the CST complex in cancer. We obtained the somatic landscape and gene expression patterns of each of the subunits of the complex studied. Furthermore, we show that CST is important for genetic stability and nucleic acid metabolism in cancer. We identify possible interactors, transcription factors, and microRNAs associated with CST and two drugs that may disrupt their pathways. In addition, we show that CST gene expression is associated with cancer survival and recurrence in several tumor types. Finally, we show negative and positive correlations between immune checkpoint genes and CST in different types of cancer. With this work, we corroborate the importance of these genes in cancer biology and open perspectives for their use in other works in the field.


Assuntos
Neoplasias , Telomerase , Proteínas de Ligação a Telômeros , Humanos , Neoplasias/genética , Complexo Shelterina , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
4.
Methods ; 204: 207-214, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34929333

RESUMO

G-quadruplex (G4) DNA poses a unique obstacle to DNA synthesis during replication or DNA repair due to its unusual structure which deviates significantly from the conventional DNA double helix. A mechanism to overcome the G4 roadblock is provided by the action of a G4-resolving helicase that collaborates with the DNA polymerase to smoothly catalyze polynucleotide synthesis past the unwound G4. In this technique-focused paper, we describe the experimental approaches of the primer extension assay using a G4 DNA template to measure the extent and fidelity of DNA synthesis by a DNA polymerase acting in concert with a G4-resolving DNA helicase. Important parameters pertaining to reaction conditions and controls are discussed to aid in the design of experiments and interpretation of the data obtained. This methodology can be applied in multiple capacities that may depend on the DNA substrate, DNA polymerase, or DNA helicase under investigation.


Assuntos
Quadruplex G , DNA/química , DNA/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA
5.
Front Chem ; 9: 733463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434922

RESUMO

Altered cellular metabolism, which is essential for the growth and survival of tumor cells in a specific microenvironment, is one of the hallmarks of cancer. Among the most significant changes in the metabolic pattern of tumor cells is the shift from oxidative phosphorylation to aerobic glycolysis for glucose utilization. Tumor cells also exhibit changes in patterns of protein and nucleic acid metabolism. Recently, gold compounds have been shown to target several metabolic pathways and a number of metabolites in tumor cells. In this review, we summarize how gold compounds modulate glucose, protein, and nucleic acid metabolism in tumor cells, resulting in anti-tumor effects. We also discuss the rationale underlying the anti-tumor effects of these gold compounds and highlight how to effectively utilize against various types of tumors.

6.
Genes (Basel) ; 11(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120966

RESUMO

Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.


Assuntos
Instabilidade Cromossômica/genética , DNA Helicases/genética , Replicação do DNA/genética , DNA/genética , Trifosfato de Adenosina/genética , Reparo do DNA/genética , Humanos , Ácidos Nucleicos/genética
7.
Protein Expr Purif ; 163: 105448, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31279833

RESUMO

The bacterial RNA polymerase (RNAP) is a large, complex molecular machine that is the engine of gene expression. Despite global conservation in their structures and function, RNAPs from different bacteria can have unique features in promoter and transcription factor recognition. Therefore, availability of purified RNAP from different bacteria is key to understanding these species-specific aspects and will be valuable for antibiotic drug discovery. Pseudomonas aeruginosa is one of the leading causes of hospital and community acquired infections worldwide - making the organism an important public health pathogen. We developed a method for producing high quantities of highly pure and active recombinant P. aeruginosa str. PAO1 RNAP core and holoenzyme complexes that employed two-vector systems for expressing the core enzyme (α, ß, ß', and ω subunits) and for expressing the holoenzyme complex (core + σ70). Unlike other RNAP expression approaches, we used a low temperature autoinduction system in E. coli with T7 promoters that produced high cell yields and stable protein expression. The purification strategy comprised of four chromatographic separation steps (metal chelate, heparin, and ion-exchange) with yields of up to 11 mg per 500 mL culture. Purified holoenzyme and reconstituted holoenzyme from core and σ70 were highly active at transcribing both small and large-sized DNA templates, with a determined elongation rate of ~18 nt/s for the holoenzyme. The successful purification of the P. aeruginosa RNAP provides a gateway for studies focusing on in vitro transcriptional regulation in this pathogen.


Assuntos
RNA Polimerases Dirigidas por DNA/isolamento & purificação , Holoenzimas/isolamento & purificação , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Clonagem Molecular/métodos , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Holoenzimas/genética , Holoenzimas/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Comb Chem High Throughput Screen ; 22(6): 379-386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31272350

RESUMO

AIM AND OBJECTIVE: Flap endonuclease-1 (FEN1) plays a central role in DNA replication and DNA damage repair process. In mammals, FEN1 functional sites variation is related to cancer and chronic inflammation, and supports the role of FEN1 as a tumor suppressor. However, FEN1 is overexpressed in multiple types of cancer cells and is associated with drug resistance, supporting its role as an oncogene. Hence, it is vital to explore the multi-functions of FEN1 in normal cell metabolic process. This study was undertaken to examine how the gene expression profile changes when FEN1 is downregulated in 293T cells. MATERIALS AND METHODS: Using the RNA sequencing and real-time PCR approaches, the transcript expression profile of FEN1 knockdown HEK293T cells have been detected for the next step evaluation, analyzation, and validation. RESULTS: Our results confirmed that FEN1 is important for cell viability. We showed that when FEN1 downregulation led to the interruption of nucleic acids related metabolisms, cell cycle related metabolisms are significantly interrupted. FEN1 may also participate in non-coding RNA processing, ribosome RNA processing, transfer RNA processing, ribosome biogenesis, virus infection and cell morphogenesis. CONCLUSION: These findings provide insight into how FEN1 nuclease might regulate a wide variety of biological processes, and laid the foundation for understanding the role of other RAD2 family nucleases in cell growth and metabolism.


Assuntos
Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Neoplasias/genética , Ácidos Nucleicos/metabolismo , Viroses/genética , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Endonucleases Flap/deficiência , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , RNA-Seq , Viroses/metabolismo , Viroses/patologia
9.
Int J Biol Macromol ; 127: 66-75, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30578903

RESUMO

DHH superfamily proteins play pivotal roles in various cellular processes like replication, recombination, repair and nucleic acids metabolism. These proteins are important for homeostasis maintenance and stress tolerance in prokaryotes and eukaryotes. The prominent members of DHH superfamily include single-strand specific exonuclease RecJ, nanoRNases, polyphosphatase PPX1, pyrophosphatase, prune phosphodiesterase and cell cycle protein Cdc45. The mutations of genes coding for DHH superfamily proteins lead to severe growth defects and in some cases, may be lethal. The members of superfamily have a wide substrate spectrum. The spectrum of substrate for DHH superfamily members ranges from smaller molecules like pyrophosphate and cyclic nucleotides to longer single-stranded DNA molecule. Several genetic, structural and biochemical studies have provided interesting insights about roles of DHH superfamily members. However, there are still various unexplored members in both prokaryotes and eukaryotes. Many aspects of this superfamily associated with homeostasis maintenance and stress tolerance are still not clearly understood. A comprehensive understanding is pre-requisite to decipher the physiological significance of members of DHH superfamily. This article provides the current understanding of DHH superfamily members and their significance in nucleic acids metabolism and stress tolerance across diverse forms of life.


Assuntos
Proteínas Arqueais , Proteínas de Bactérias , Esterases , Células Eucarióticas/enzimologia , Ácidos Nucleicos/metabolismo , Células Procarióticas/enzimologia , Estresse Fisiológico , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esterases/química , Esterases/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/genética
10.
Elife ; 72018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29460780

RESUMO

Ribonucleotide reductases (RNRs) convert ribonucleotides into deoxyribonucleotides, a reaction essential for DNA replication and repair. Human RNR requires two subunits for activity, the α subunit contains the active site, and the ß subunit houses the radical cofactor. Here, we present a 3.3-Å resolution structure by cryo-electron microscopy (EM) of a dATP-inhibited state of human RNR. This structure, which was determined in the presence of substrate CDP and allosteric regulators ATP and dATP, has three α2 units arranged in an α6 ring. At near-atomic resolution, these data provide insight into the molecular basis for CDP recognition by allosteric specificity effectors dATP/ATP. Additionally, we present lower-resolution EM structures of human α6 in the presence of both the anticancer drug clofarabine triphosphate and ß2. Together, these structures support a model for RNR inhibition in which ß2 is excluded from binding in a radical transfer competent position when α exists as a stable hexamer.


Assuntos
Multimerização Proteica , Ribonucleotídeo Redutases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Microscopia Crioeletrônica , Cistina Difosfato/química , Cistina Difosfato/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ribonucleotídeo Redutases/metabolismo
11.
Annu Rev Med ; 68: 297-315, 2017 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-27813875

RESUMO

Type I interferons (IFNs) play a central role in the immune defense against viral infections. Type I IFN activation is induced by pattern-recognition receptors of the innate immune system that sense pathogen-derived nucleic acids. Cellular responses to type I IFN signaling are orchestrated by a complex network of regulatory pathways that involve both the innate and adaptive immune system. The genetic and molecular dissection of rare Mendelian disorders associated with constitutive overproduction of type I IFN has provided unique insight into cell-intrinsic disease mechanisms that initiate and sustain autoinflammation and autoimmunity and that are caused by disturbances in the intracellular nucleic acid metabolism or in cytosolic nucleic acid-sensing pathways. Collectively, these findings have greatly advanced our understanding of mechanisms that protect the organism against inappropriate immune activation triggered by self nucleic acids while maintaining a prompt and efficient immune response to foreign nucleic acids derived from invading pathogens.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Inflamação/genética , Inflamação/imunologia , Interferon Tipo I/imunologia , Animais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Humanos , Imunidade Inata , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Ácidos Nucleicos/imunologia
12.
World J Gastroenterol ; 22(36): 8161-7, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27688657

RESUMO

A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus (HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication.


Assuntos
Hepatite B Crônica/metabolismo , Fígado/metabolismo , Transdução de Sinais , Ácidos e Sais Biliares/química , Glicemia/análise , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Vírus da Hepatite B , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Fígado/patologia , Redes e Vias Metabólicas , Ácidos Nucleicos/análise , Ácidos Nucleicos/química , Vitaminas/química , Vitaminas/metabolismo
13.
Exp Ther Med ; 12(1): 18-22, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347011

RESUMO

Osteoarthritis is a chronic degenerative joint disorder with the characteristics of articular cartilage destruction, subchondral bone alterations and synovitis. Clinical signs and symptoms of osteoarthritis include pain, stiffness, restricted motion and crepitus. It is the major cause of joint dysfunction in developed nations and has enormous social and economic consequences. Current treatments focus on symptomatic relief, however, they lack efficacy in controlling the progression of this disease, which is a leading cause of disability. Vitamin E is safe to use and may delay the progression of osteoarthritis by acting on several aspects of the disease. In this review, how vitamin E may promote the maintenance of skeletal muscle and the regulation of nucleic acid metabolism to delay osteoarthritis progression is explored. In addition, how vitamin E may maintain the function of sex organs and the stability of mast cells, thus conferring a greater resistance to the underlying disease process is also discussed. Finally, the protective effect of vitamin E on the subchondral vascular system, which decreases the reactive remodeling in osteoarthritis, is reviewed.

14.
Adv Parasitol ; 93: 69-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27238003

RESUMO

Different life cycle stages of Haemonchus contortus adapt to different ecosystems. This adaptation is accompanied by alterations in gene transcription and expression associated with the energy, amino acid, nitrogen, lipid and/or nucleic acid metabolism of the respective stages. For example, the aerobic metabolism of larvae depends on an efficient citric acid cycle, whereas the anaerobic metabolism of adults requires glycolysis, resulting in the production of volatile fatty acids, such as acetic acid and propionic acid. There are only few anthelmintics targeting nematode energy metabolism. In addition, H. contortus has reduced pathways for amino acid metabolism, polyamine metabolism and nitrogen excretion pathways. Moreover, nucleic acid metabolism comprising purine and pyrimidine salvage pathways as well as lipid metabolism are reduced. In addition, nematodes possess a particular composition of their cuticle. Energy production of adult worms is mainly linked to egg production and complex regulation of the neuromuscular system in both females and males. In this context, microtubules consisting of α- and ß-tubulin heterodimers play a crucial role in the presynaptic vesicle transport. Due to the significant distinction of its quarternary structure in nematodes in comparison to other organisms, ß-tubulin was identified as a major target for benzimidazoles used for anthelmintic treatment. Concerning the function of the neuromuscular system, acetylcholine, a ligand of the nicotinic acetylcholine receptor (nAChR), is the major excitatory neurotransmitter in H. contortus. In contrast, glutamate-gated chloride channels, calcium- and voltage-dependent potassium channels as well as γ-aminobutyric acid (GABA)A and its receptors act as inhibitory neurotransmitters and thus opponents to nAChR. For example, the calcium- and voltage-dependent potassium channel SLO-1 is an important target of emodepside, which is involved in the sensitive regulation of activatory and inhibitory receptors of the nervous system. Most of the modern anthelmintics target these different neuromuscular receptors. The mechanisms of resistance to anthelmintics, either specific or non-specific, are associated with changes in the molecular targets of the drugs, changes in metabolism of the drug (inactivation, removal or prevention of its activation) and/or increased efflux systems. The biochemical and molecular analyses of key developmental, metabolic and structural process of H. contortus still require substantial efforts. The nAChR, glutamate-gated chloride channel and calcium- and voltage-dependent potassium channel SLO-1 have long been known as being essential for nematode survival. Therefore, future research should be intensified to fully resolve the three-dimensional structures of these receptors, as has already been started for glutamate-gated chloride channel. With this knowledge, it should be possible to design new anthelmintics, which possess improved binding capacities to corresponding receptors.


Assuntos
Anti-Helmínticos/farmacologia , Hemoncose/parasitologia , Haemonchus/fisiologia , Nematoides/fisiologia , Infecções por Nematoides/parasitologia , Adaptação Fisiológica , Animais , Descoberta de Drogas , Resistência a Medicamentos , Metabolismo Energético , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Estágios do Ciclo de Vida , Metabolismo dos Lipídeos , Nematoides/efeitos dos fármacos
15.
Elife ; 5: e07141, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754917

RESUMO

Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR 'reads' the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell.


Assuntos
Regulação Alostérica , Desoxirribonucleotídeos/química , Desoxirribonucleotídeos/metabolismo , Escherichia coli/enzimologia , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
16.
Prog Biophys Mol Biol ; 121(1): 66-73, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26603688

RESUMO

In human cells, ribonuclease (RNase) H2 complex is the predominant source of RNase H activities with possible roles in nucleic acid metabolism to preserve genome stability and to prevent immune activation. Dysfunction mutations in any of the three subunits of human RNase H2 complex can result in embryonic/perinatal lethality or cause Aicardi-Goutières syndrome (AGS). Most recently, increasing findings have shown that human RNase H2 proteins play roles beyond the RNase H2 enzymatic activities in health and disease. Firstly, the biochemical and structural properties of human RNase H2 proteins allow their interactions with various partner proteins that may support functions other than RNase H2 enzymatic activities. Secondly, the disparities of clinical presentations of AGS with different AGS-mutations and the biochemical and structural analysis of AGS-mutations, especially the results from both AGS-knockin and RNase H2-null mouse models, suggest that human RNase H2 complex has certain cellular functions beyond the RNase H2 enzymatic activities to prevent the innate-immune-mediated inflammation. Thirdly, the subunit proteins RNASEH2A and RNASEH2B respectively, not related to the RNase H2 enzymatic activities, have been shown to play a certain role in the pathophysiological processes of different cancer types. In this minireview, we aims to provide a brief overview of the most recent investigations into the biological functions of human RNase H2 proteins and the underlying mechanisms of their actions, emphasizing on the new insights into the roles of human RNase H2 proteins playing beyond the RNase H2 enzymatic activities in health and disease.


Assuntos
Ribonuclease H/metabolismo , Animais , Doenças Autoimunes do Sistema Nervoso/enzimologia , Desenvolvimento Embrionário , Instabilidade Genômica , Humanos , Neoplasias/enzimologia , Malformações do Sistema Nervoso/enzimologia
17.
Acta Naturae ; 2(2): 36-59, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22649640

RESUMO

This review focuses on new trends in nucleoside biotechnology, which have emerged during the last decade. Continuously growing interest in the study of this class of compounds is fueled by a number of factors: ( i ) a growing need for large-scale production of natural 2 ' -deoxy- ß -D-ribonucleosides as well as their analogs with modifications in the carbohydrate and base fragments, which can then be used for the synthesis and study of oligonucleotides, including short-interfering RNA (siRNA), microRNA (miRNA), etc.; ( ii ) a necessity for the development of efficient practical technologies for the production of biologically important analogs of natural nucleosides, including a number of anticancer and antiviral drugs; ( iii ) a need for further study of known and novel enzymatic transformations and their use as tools for the efficient synthesis of new nucloside analogs and derivates with biomedical potential. This article will review all of these aspects and also include a brief retrospect of this field of research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA