Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biomolecules ; 13(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136671

RESUMO

Cells maintain a fine-tuned balance of deoxyribonucleoside 5'-triphosphates (dNTPs), a crucial factor in preserving genomic integrity. Any alterations in the nucleotide pool's composition or chemical modifications to nucleotides before their incorporation into DNA can lead to increased mutation frequency and DNA damage. In addition to the chemical modification of canonical dNTPs, the cellular de novo dNTP metabolism pathways also produce noncanonical dNTPs. To keep their levels low and prevent them from incorporating into the DNA, these noncanonical dNTPs are removed from the dNTP pool by sanitizing enzymes. In this study, we introduce innovative protocols for the high-throughput fluorescence-based quantification of dUTP, 5-methyl-dCTP, and 5-hydroxymethyl-dCTP. To distinguish between noncanonical dNTPs and their canonical counterparts, specific enzymes capable of hydrolyzing either the canonical or noncanonical dNTP analogs are employed. This approach provides a more precise understanding of the composition and noncanonical constituents of dNTP pools, facilitating a deeper comprehension of DNA metabolism and repair. It is also crucial for accurately interpreting mutational patterns generated through the next-generation sequencing of biological samples.


Assuntos
Nucleotídeos de Desoxicitosina , Desoxirribonucleotídeos , Desoxirribonucleotídeos/metabolismo , DNA
2.
Annu Rev Biophys ; 52: 525-551, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36791746

RESUMO

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods have become indispensable tools for the study of biomolecules. In this article, we briefly review the basic methodological details of QM/MM approaches and discuss their applications to various energy transduction problems in biomolecular machines, such as long-range proton transports, fast electron transfers, and mechanochemical coupling. We highlight the particular importance for these applications of balancing computational efficiency and accuracy. Using several recent examples, we illustrate the value and limitations of QM/MM methodologies for both ground and excited states, as well as strategies for calibrating them in specific applications. We conclude with brief comments on several areas that can benefit from further efforts to make QM/MM analyses more quantitative and applicable to increasingly complex biological problems.


Assuntos
Transporte Biológico , Fenômenos Físicos
3.
J Biol Chem ; 298(8): 102169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732208

RESUMO

Remdesivir and molnupiravir have gained considerable interest because of their demonstrated activity against SARS-CoV-2. These antivirals are converted intracellularly to their active triphosphate forms remdesivir-TP and molnupiravir-TP. Cellular hydrolysis of these active metabolites would consequently decrease the efficiency of these drugs; however, whether endogenous enzymes that can catalyze this hydrolysis exist is unknown. Here, we tested remdesivir-TP as a substrate against a panel of human hydrolases and found that only Nudix hydrolase (NUDT) 18 catalyzed the hydrolysis of remdesivir-TP with notable activity. The kcat/Km value of NUDT18 for remdesivir-TP was determined to be 17,700 s-1M-1, suggesting that NUDT18-catalyzed hydrolysis of remdesivir-TP may occur in cells. Moreover, we demonstrate that the triphosphates of the antivirals ribavirin and molnupiravir are also hydrolyzed by NUDT18, albeit with lower efficiency than Remdesivir-TP. Low activity was also observed with the triphosphate forms of sofosbuvir and aciclovir. This is the first report showing that NUDT18 hydrolyzes triphosphates of nucleoside analogs of exogenous origin, suggesting that NUDT18 can act as a cellular sanitizer of modified nucleotides and may influence the antiviral efficacy of remdesivir, molnupiravir, and ribavirin. As NUDT18 is expressed in respiratory epithelial cells, it may limit the antiviral efficacy of remdesivir and molnupiravir against SARS-CoV-2 replication by decreasing the intracellular concentration of their active metabolites at their intended site of action.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/metabolismo , Antivirais/farmacologia , Citidina/análogos & derivados , Humanos , Hidrólise , Hidroxilaminas , Polifosfatos , Pirofosfatases , Ribavirina/farmacologia , Ribavirina/uso terapêutico , SARS-CoV-2 , Nudix Hidrolases
4.
Ecotoxicol Environ Saf ; 239: 113635, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605321

RESUMO

Perfluorooctanoic acid (PFOA) is a contaminant of global concern owing to its prevalent occurrence in aquatic and terrestrial environments with potential hazardous impact on living organisms. Here, we investigated the influence of realistic environmental concentrations of PFOA (0, 0.25, 0.5, or 1.0 mg/L) on relevant behaviors of adult zebrafish (Danio rerio) (e.g., exploration to novelty, social preference, and aggression) and the possible role of PFOA in modulating cholinergic and purinergic signaling in the brain after exposure for 7 consecutive days. PFOA significantly increased geotaxis as well as reduced vertical exploration (a behavioral endpoint for anxiety), and increased the frequency and duration of aggressive episodes without affecting their social preference. Exposure to PFOA did not affect ADP hydrolysis, whereas ATP and AMP hydrolysis were significantly increased at the highest concentration tested. However, AChE activity was markedly decreased in all PFOA-exposed groups when compared with control. In conclusion, PFOA induces aggression and anxiety-like behavior in adult zebrafish and modulates both cholinergic and purinergic signaling biomarkers. These novel data can provide valuable insights into possible health threats related to human activities, demonstrating the utility of adult zebrafish to elucidate how PFOA affects neurobehavioral responses in aquatic organisms.


Assuntos
Fluorocarbonos , Peixe-Zebra , Agressão , Animais , Ansiedade/induzido quimicamente , Caprilatos/toxicidade , Colinérgicos , Fluorocarbonos/toxicidade , Humanos , Peixe-Zebra/fisiologia
5.
Bio Protoc ; 12(2): e4304, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35127994

RESUMO

Cell lysis, a process that releases host oligonucleotides, is required in many biotechnological applications. However, intact oligonucleotides in crude cellular lysates increase the viscosity of lysates, which complicates downstream processes and routine laboratory workflows. To address this, nucleases that hydrolyze the intact oligonucleotides are commonly added, either as purified enzymes or co-expressed in genetically engineered bacterial strains. To measure oligonucleotide hydrolysis, common DNA quantification methods, such as qPCR or fluorescence-based, require expensive reagents and equipment, and cannot distinguish different-sized DNA fragments. Here, we outline a simple alternative method for measuring DNA/RNA hydrolysis in cellular lysates, by measuring their viscosity. This method only requires common laboratory supplies and a cell phone camera.

6.
FEBS J ; 289(13): 3770-3788, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35066976

RESUMO

The bacterial heterodimeric ATP-binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug-resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide-binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug-mimetic azido-ethidium. Surprisingly, our analyses of azido-ethidium-labelled PatAB peptides point to ethidium binding in the PatA nucleotide-binding domain, with the azido moiety crosslinked to residue Q521 in the H-like loop of the degenerate nucleotide-binding site. Investigation into this compound and residue's role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium-dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium-like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non-competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide-binding domains.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Streptococcus pneumoniae , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Etídio/metabolismo , Hidrólise , Nucleotídeos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
7.
Mol Cell ; 81(19): 3992-4007.e10, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34562373

RESUMO

ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.


Assuntos
Proteínas de Bactérias/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos , Citidina Trifosfato/metabolismo , DNA Bacteriano/metabolismo , Myxococcus xanthus/enzimologia , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Hidrólise , Mutação , Myxococcus xanthus/genética , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Fatores de Tempo
8.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166613

RESUMO

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydomonas/metabolismo , Multimerização Proteica , Synechocystis/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Membrana Celular/metabolismo , Chlamydomonas/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Fluorescência Verde/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Luz , Lipídeos/química , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estresse Fisiológico/efeitos da radiação , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura
9.
Toxins (Basel) ; 12(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333975

RESUMO

Toxin-antitoxin (TA) modules are ubiquitous in bacteria, but their biological importance in stress adaptation remains a matter of debate. The inactive ζ-ε2-ζ TA complex is composed of one labile ε2 antitoxin dimer flanked by two stable ζ toxin monomers. Free toxin ζ reduces the ATP and GTP levels, increases the (p)ppGpp and c-di-AMP pool, inactivates a fraction of uridine diphosphate-N-acetylglucosamine, and induces reversible dormancy. A small subpopulation, however, survives toxin action. Here, employing a genetic orthogonal control of ζ and ε levels, the fate of bacteriophage SPP1 infection was analyzed. Toxin ζ induces an active slow-growth state that halts SPP1 amplification, but it re-starts after antitoxin expression rather than promoting abortive infection. Toxin ζ-induced and toxin-facilitated ampicillin (Amp) dormants have been revisited. Transient toxin ζ expression causes a metabolic heterogeneity that induces toxin and Amp dormancy over a long window of time rather than cell persistence. Antitoxin ε expression, by reversing ζ activities, facilitates the exit of Amp-induced dormancy both in rec+ and recA cells. Our findings argue that an unexploited target to fight against antibiotic persistence is to disrupt toxin-antitoxin interactions.


Assuntos
Ampicilina/farmacologia , Antibacterianos/farmacologia , Antitoxinas/farmacologia , Bacillus subtilis/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Uridina Difosfato N-Acetilglicosamina/antagonistas & inibidores , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Testes de Sensibilidade Microbiana/métodos , Uridina Difosfato N-Acetilglicosamina/metabolismo
10.
J Biol Chem ; 295(15): 4761-4772, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32144205

RESUMO

MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP-bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site subpocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1-catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Desoxirribonucleotídeos/metabolismo , Evolução Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Domínio Catalítico , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Embrião não Mamífero/metabolismo , Humanos , Hidrólise , Cinética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Especificidade por Substrato , Peixe-Zebra , Nudix Hidrolases
11.
Adv Biol Regul ; 76: 100694, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019729

RESUMO

Sulfur assimilation is an essential metabolic pathway that regulates sulfation, amino acid metabolism, nucleotide hydrolysis, and organismal homeostasis. We recently reported that mice lacking bisphosphate 3'-nucleotidase (BPNT1), a key regulator of sulfur assimilation, develop iron-deficiency anemia (IDA) and anasarca. Here we demonstrate two approaches that successfully reduce metabolic toxicity caused by loss of BPNT1: 1) dietary methionine restriction and 2) overproduction of a key transcriptional regulator hypoxia inducible factor 2α (Hif-2a). Reduction of methionine in the diet reverses IDA in mice lacking BPNT1, through a mechanism of downregulation of sulfur assimilation metabolic toxicity. Gaining Hif-2a acts through a different mechanism by restoring iron homeostatic gene expression in BPNT1 deficient mouse intestinal organoids. Finally, as loss of BPNT1 impairs expression of known genetic modifiers of iron-overload, we demonstrate that intestinal-epithelium specific loss of BPNT1 attenuates hepatic iron accumulation in mice with homozygous C282Y mutations in homeostatic iron regulator (HFEC282Y), the most common cause of hemochromatosis in humans. Overall, our study uncovers genetic and dietary strategies to overcome anemia caused by defects in sulfur assimilation and identifies BPNT1 as a potential target for the treatment of hemochromatosis.


Assuntos
Anemia Ferropriva/genética , Proteína da Hemocromatose/genética , Hemocromatose/genética , Ferro/metabolismo , Nucleotidases/genética , Enxofre/metabolismo , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Anemia Ferropriva/prevenção & controle , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dieta , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hemocromatose/metabolismo , Hemocromatose/patologia , Hemocromatose/prevenção & controle , Proteína da Hemocromatose/metabolismo , Homeostase/genética , Homozigoto , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/administração & dosagem , Metionina/deficiência , Camundongos , Camundongos Knockout , Mutação , Nucleotidases/metabolismo , Organoides/metabolismo , Organoides/patologia , Transdução de Sinais
12.
Toxins (Basel) ; 11(1)2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634431

RESUMO

Toxin ζ expression triggers a reversible state of dormancy, diminishes the pool of purine nucleotides, promotes (p)ppGpp synthesis, phosphorylates a fraction of the peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG), leading to unreactive UNAG-P, induces persistence in a reduced subpopulation, and sensitizes cells to different antibiotics. Here, we combined computational analyses with biochemical experiments to examine the mechanism of toxin ζ action. Free ζ toxin showed low affinity for UNAG. Toxin ζ bound to UNAG hydrolyzed ATP·Mg2+, with the accumulation of ADP, Pi, and produced low levels of phosphorylated UNAG (UNAG-P). Toxin ζ, which has a large ATP binding pocket, may temporally favor ATP binding in a position that is distant from UNAG, hindering UNAG phosphorylation upon ATP hydrolysis. The residues D67, E116, R158 and R171, involved in the interaction with metal, ATP, and UNAG, were essential for the toxic and ATPase activities of toxin ζ; whereas the E100 and T128 residues were partially dispensable. The results indicate that ζ bound to UNAG reduces the ATP concentration, which indirectly induces a reversible dormant state, and modulates the pool of UNAG.


Assuntos
Trifosfato de Adenosina/metabolismo , Toxinas Biológicas/metabolismo , Uridina Difosfato N-Acetilglicosamina/metabolismo , Simulação por Computador , Modelos Moleculares , Streptococcus pyogenes
13.
Anal Biochem ; 520: 62-67, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28017740

RESUMO

One of the most common assays for nucleoside triphosphatase (NTPase) activity entails the quantification of inorganic phosphate (Pi) as a colored phosphomolybdate complex at low pH. While this assay is very sensitive, it is not selective for Pi in the presence of labile organic phosphate compounds (OPCs). Since NTPase activity assays typically require a large excess of OPCs, such as nucleotides, selectivity for Pi in the presence of OPCs is often critical in evaluating enzyme activity. Here we present an improved method for the measurement of enzymatic nucleotide hydrolysis as Pi released, which achieves selectivity for Pi in the presence of OPCs while also avoiding the costs and hazards inherent in other methods for measuring nucleotide hydrolysis. We apply this method to the measurement of ATP hydrolysis by nitrogenase and GTP hydrolysis by elongation factor G (EF-G) in order to demonstrate the broad applicability of our method for the determination of nucleotide hydrolysis in the presence of interfering OPCs.


Assuntos
Colorimetria , Nucleosídeo-Trifosfatase/metabolismo , Fosfatos/metabolismo , Hidrólise , Molibdênio/análise , Molibdênio/química , Molibdênio/metabolismo , Fosfatos/análise , Ácidos Fosfóricos/análise , Ácidos Fosfóricos/metabolismo , Fósforo/química
14.
Behav Brain Res ; 320: 255-263, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007536

RESUMO

The zebrafish (Danio rerio) is an emergent model organism for assessing fear and anxiety-like phenotypes. The short fin wild type (WT), and leopard (leo) are two zebrafish populations that present several behavioral differences, in which leo displays pronounced defensive responses. Mounting evidence suggests a modulatory role for cholinergic and purinergic signaling in fear and anxiety, but the involvement of these neurotransmitter systems in the behavioral profile of zebrafish is obscure. Here we tested whether the acute exposure to conspecific alarm substance (AS), an experimental protocol that induces fear, alters shoaling behavior, diving response, acetylcholinesterase (AChE) activity, and nucleotide hydrolysis in brain tissue of WT and leo. When four fish were concomitantly exposed to AS extracted from a donor fish of similar phenotype, both populations presented a significant increase of erratic movements without changes in freezing bouts. An increased shoal cohesion and a decreased vertical distribution were observed only in WT exposed to AS. The respective population also revealed a significant increase in AChE and ecto-5'-nucleotidase activities after the exposure period. The comparison of basal endpoints between populations showed that leo displays a higher social cohesion, few vertical transitions and enhanced AChE and ecto-5'-nucleotidase activities. In conclusion, we suggest that the effects of AS on defensive behaviors depend on the population, indicating the existence of distinct neurochemical mechanisms involved. Furthermore, this report shows the first evidence of a potential role of cholinergic and purinergic systems in fear- and anxiety-like responses of zebrafish populations.


Assuntos
5'-Nucleotidase/metabolismo , Acetilcolinesterase/metabolismo , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Reação de Fuga/fisiologia , Medo , Análise de Variância , Animais , Animais Geneticamente Modificados , Área Sob a Curva , Feminino , Masculino , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
J Mol Model ; 22(11): 259, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27714533

RESUMO

A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol-1 to ±0.1 kcal mol-1. This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.


Assuntos
Enzimas Reparadoras do DNA/química , Nucleotídeos de Desoxiguanina/química , Modelos Químicos , Monoéster Fosfórico Hidrolases/química , Software , Termodinâmica , Sítios de Ligação , Humanos , Especificidade por Substrato
16.
Mem. Inst. Oswaldo Cruz ; 110(2): 201-208, 04/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-744468

RESUMO

Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.


Assuntos
Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/patologia , Terapias Complementares , Doença de Alzheimer/terapia , Progressão da Doença , Estudos de Viabilidade
17.
FEBS J ; 280(19): 4865-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23902381

RESUMO

Atu5117 from Agrobacterium tumefaciens is a highly conserved protein with a putative nucleotidyltransferase domain in its N-terminal region and a putative higher eukaryotes and prokaryotes nucleotide-binding domain in its C-terminal region. This protein has been shown to be a T-complex-recruiting protein that can recruit T-complex from the cytosol to the polar VirB/D4 type IV secretion system (T4SS). However, the biochemical function of Atu5117 is still unknown. Here, we show that Atu5117 is a (d)NTPase. Although no proteins with nucleotidyltransferase and higher eukaryotes and prokaryotes nucleotide-binding domains were identified as (d)NTPases, Atu5117 was able to convert all eight canonical NTPs and dNTPs to NDP, dNDP and inorganic phosphate in vitro, and required Mg(2+) for its (d)NTPase activity. The kinetic parameters of Atu5117 (d)NTPase for eight substrates were characterized. Kinetic data showed that Atu5117 (d)NTPase preferred ATP as its substrate. The optimal conditions for (d)NTPase activity of Atu5117 were very similar to those required for Agrobacterium tumorigenesis. The kinetic parameters of (d)NTPase of Atu5117 for all four canonical NTPs were in the same orders of magnitude as the kinetic parameters of the ATPases identified in some components of the VirB/D4 T4SS. These results suggest that Atu5117 might function as an energizer to recruit T-complex to the T4SS transport site.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA