Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Microbiome ; 12(1): 213, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438987

RESUMO

BACKGROUND: Bacterial pathogens such as Staphylococcus aureus colonize body surfaces of part of the human population, which represents a critical risk factor for skin disorders and invasive infections. However, such pathogens do not belong to the human core microbiomes. Beneficial commensal bacteria can often prevent the invasion and persistence of such pathogens by using molecular strategies that are only superficially understood. We recently reported that the commensal bacterium Staphylococcus lugdunensis produces the novel antibiotic lugdunin, which eradicates S. aureus from the nasal microbiomes of hospitalized patients. However, it has remained unclear if S. lugdunensis may affect S. aureus carriage in the general population and which external factors might promote S. lugdunensis carriage to enhance its S. aureus-eliminating capacity. RESULTS: We could cultivate S. lugdunensis from the noses of 6.3% of healthy human volunteers. In addition, S. lugdunensis DNA could be identified in metagenomes of many culture-negative nasal samples indicating that cultivation success depends on a specific bacterial threshold density. Healthy S. lugdunensis carriers had a 5.2-fold lower propensity to be colonized by S. aureus indicating that lugdunin can eliminate S. aureus also in healthy humans. S. lugdunensis-positive microbiomes were dominated by either Staphylococcus epidermidis, Corynebacterium species, or Dolosigranulum pigrum. These and further bacterial commensals, whose abundance was positively associated with S. lugdunensis, promoted S. lugdunensis growth in co-culture. Such mutualistic interactions depended on the production of iron-scavenging siderophores by supportive commensals and on the capacity of S. lugdunensis to import siderophores. Video Abstract CONCLUSIONS: These findings underscore the importance of microbiome homeostasis for eliminating pathogen colonization. Elucidating mechanisms that drive microbiome interactions will become crucial for microbiome-precision editing approaches.


Assuntos
Nariz , Sideróforos , Infecções Estafilocócicas , Staphylococcus aureus , Staphylococcus lugdunensis , Humanos , Staphylococcus lugdunensis/metabolismo , Staphylococcus lugdunensis/isolamento & purificação , Staphylococcus aureus/genética , Nariz/microbiologia , Sideróforos/metabolismo , Infecções Estafilocócicas/microbiologia , Microbiota , Adulto , Masculino , Feminino , Voluntários Saudáveis , Simbiose , Portador Sadio/microbiologia , Pessoa de Meia-Idade
2.
mBio ; 15(10): e0219224, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39324795

RESUMO

Tupanviruses, members of the family Mimiviridae, infect phagocytic cells. Particle uncoating begins inside the phagosome, with capsid opening via the stargate. The mechanism through which this opening takes place is unknown. Once phagocytized, metal ion flux control and ROS are induced to inactivate foreign particles, including viruses. Here, we studied the effect of iron ions, copper ions, and H2O2 on Tupanvirus particles. Such treatments induced stargate opening in vitro, as observed by different microscopy techniques. Metal-treated viruses were found to be non-infectious, leading to the hypothesis that stargate opening likely resulted in the release of the viral seed, which is required for infection initiation. To the best of our knowledge, this is the first description of a giant virus capsid morphological change induced by transition metals and H2O2, which may be important to describe new virulence factors and capsid uncoating mechanisms.


Assuntos
Peróxido de Hidrogênio , Oxirredução , Replicação Viral , Peróxido de Hidrogênio/farmacologia , Mimiviridae/fisiologia , Mimiviridae/genética , Capsídeo/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Ferro/metabolismo , Animais , Desenvelopamento do Vírus
3.
Biometals ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305434

RESUMO

Leptospires, as motile Gram-negative bacteria, employ sophisticated strategies for efficient invasion and dissemination within their hosts. In response, hosts counteract pathogens through nutritional immunity, a concept involving the deprivation of essential metals such as zinc. Zinc, pivotal in modulating pathogen-host interactions, influences proteins structural, catalytic, and regulatory functions. A comprehensive understanding of how leptospires regulate intracellular zinc availability is crucial for deciphering their survival mechanisms. This study explores the proteomic profile of Leptospira interrogans sv. Copenhageni str. 10A cultivated in Ellinghausen-McCullough-Johnson-Harris medium supplemented with the zinc chelator TPA or ZnCl2. Among the 2161 proteins identified, 488 were subjected to scrutiny, revealing 102 less abundant and 81 more abundant in response to TPA. Of these 488 proteins, 164 were exclusive to the presence of TPA and 141 were exclusive to the zinc-enriched conditions. Differentially expressed proteins were classified into clusters of orthologous groups (COGs) with a distribution in metabolic functions (37.8%), information storage/processing (21.08%), cellular processes/signaling (28.04%), and poorly characterized proteins (10.65%). Differentially expressed proteins are putatively involved in processes like 1-carbon compound metabolism, folate biosynthesis, and amino acid/nucleotide synthesis. Zinc availability significantly impacted key processes putatively related to leptospires' interactions with their host, such as motility, biofilm formation, and immune escape. Under conditions of higher zinc concentration, ribosomal proteins, chaperones and components of transport systems were observed, highlighting interactions between regulatory networks responsive to zinc and iron in L. interrogans. This study not only revealed hypothetical proteins potentially related to zinc homeostasis, but also identified possible virulence mechanisms and pathogen-host adaptation strategies influenced by the availability of this metal. There is an urgent need, based on these data, for further in-depth studies aimed at detailing the role of zinc in these pathways and mechanisms, which may ultimately determine more effective therapeutic approaches to combat Leptospira infections.

4.
bioRxiv ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39091727

RESUMO

Mycobacterium tuberculosis (Mtb) infection of macrophages reprograms cellular metabolism to promote lipid retention. While it is clearly known that intracellular Mtb utilize host derived lipids to maintain infection, the role of macrophage lipid processing on the bacteria's ability to access the intracellular lipid pool remains undefined. We utilized a CRISPR-Cas9 genetic approach to assess the impact of sequential steps in fatty acid metabolism on the growth of intracellular Mtb. Our analyzes demonstrate that mutated macrophages that cannot either import, store or catabolize fatty acids restrict Mtb growth by both common and divergent anti-microbial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy and nutrient limitation. We also show that impaired macrophage lipid droplet biogenesis is restrictive to Mtb replication, but increased induction fails to rescue Mtb growth. Our work expands our understanding of how host fatty acid homeostasis impacts Mtb growth in the macrophage.

5.
J Clin Med ; 13(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39200855

RESUMO

Malnutrition, which includes macro- and micronutrient deficiencies, is common in individuals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins, minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Consequently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies, while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic phenotypes. As protein and micronutrient deficiencies mimic an infection, the body's innate response limits access to these nutrients by reducing their dietary absorption. This review highlights our current understanding of the physiological functions of allergenic proteins, iron, and vitamin A, particularly regarding their reduced bioavailability under inflamed conditions, necessitating different dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient binders and their involvement in nutritional immunity will be briefly summarized. Their ability to bind nutrients and their close association with immune cells can trigger exaggerated immune responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these allergens can also provide nutrients to immune cells and promote health.

6.
Cureus ; 16(6): e61690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975455

RESUMO

Background Zinc is a trace element essential for the normal functioning of many vital enzymes and organ systems. Studies examining the rates and degrees of zinc deficiency and its consequences in patients with critical illnesses remain scarce. Materials and methods This is a prospective observational study assessing zinc deficiency in critically ill adult patients admitted to a tertiary care intensive care unit (ICU) and its impact on clinical outcomes. Patients were divided into those with normal (≥ 71 µg/dl) and low (≤ 70 µg/dl) zinc levels. Zinc-deficient patients were further divided into mild, moderate, and severe zinc deficiency groups based on zinc levels of 61-70 µg/dl, 51-60 µg/dl, and below 51 µg/dl, respectively. The primary outcome assessed was ICU mortality, and the secondary outcomes were ICU length of stay (LOS), duration of invasive mechanical ventilation (IMV), acute kidney injury (AKI) at admission, need for non-invasive ventilation (NIV), renal replacement therapy (RRT), or vasopressors during the course of the ICU. Other parameters compared included APACHE (Acute Physiology and Chronic Health Evaluation) II, SOFA (Sequential Organ Failure Assessment) score on day 1, and levels of lactate, procalcitonin, calcium, magnesium, phosphate, and serum albumin. The study also compared the mean zinc levels in patients with low and high SOFA scores (scores up to 7 vs. 8 and above) and low and high APACHE II values (scores up to 15 vs. 16 and above). Results A total of 50 patients were included, of whom 43 (86%) were zinc deficient. Mortality in zinc-deficient and normal zinc-level patients was 33% and 43%, respectively (p = 0.602). Patients with zinc deficiency were also older (mean age 69 vs. 49 years, p = 0.02). There was no difference in secondary outcome parameters, except for more zinc-deficient patients needing RRT. Twenty-six of the zinc-deficient patients had severe zinc deficiency, ten moderate, and seven mild (p = 0.663). ICU mortality was approximately 42%, 10%, and 29% in the severe, moderate, and mild deficiency groups, respectively (p = 0.092). Zinc levels were similar between those with low and high APACHE II scores (mean 47.9 vs. 45.5 µg/dl, p = 0.606) as well as between low and high SOFA scores (mean 47.8 vs. 45.7 µg/dl, p = 0.054). Conclusion The present study suggests that zinc deficiency is very common in critically ill patients but does not correlate with their severity of illness, nor does it lead to a poorer outcome in these patients. However, further studies with a larger cohort of patients would be required to make definitive conclusions.

7.
ACS Infect Dis ; 10(8): 2551-2566, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39066728

RESUMO

Moonlighting proteins (MPs), characterized by their ability to perform multiple physiologically unrelated functions without alterations to their primary structures, represent a fascinating class of biomolecules with significant implications for host-pathogen interactions. This Review highlights the emerging importance of metabolic moonlighting proteins (MetMPs) in bacterial pathogenesis, focusing on their non-canonical secretion and unconventional surface anchoring mechanisms. Despite lacking typical signal peptides and anchoring motifs, MetMPs such as acetaldehyde alcohol dehydrogenase (AdhE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are secreted and localized to the bacterial surface under stress conditions, facilitating host colonization and immune evasion. The secretion of MetMPs, often observed during conditions such as resource scarcity or infection, suggests a complex regulation akin to the overexpression of heat shock proteins in response to environmental stresses. This Review proposes two potential pathways for MetMP secretion: membrane damage-induced permeability and co-transportation with traditionally secreted proteins, highlighting a remarkable bacterial adaptability. Biophysically, surface anchoring of MetMPs is driven by electrostatic interactions, bypassing the need for conventional anchoring sequences. This mechanism is exemplified by the interaction between the bifunctional enzyme AdhE (known as Listeria adhesion protein, LAP) and the internalin B (InlB) in Listeria monocytogenes, which is mediated by charged residues facilitating adhesion to host tissues. Furthermore, MetMPs play critical roles in iron homeostasis, immune modulation, and evasion, underscoring their multifaceted roles in bacterial pathogenicity. The intricate dynamics of MetMP secretion and anchoring underline the need for further research to unravel the molecular mechanisms underpinning these processes, offering potential new targets for therapeutic intervention against bacterial infections.


Assuntos
Proteínas de Bactérias , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Sistema Imunitário , Listeria monocytogenes/patogenicidade , Evasão da Resposta Imune , Bactérias/enzimologia , Bactérias/patogenicidade
8.
Infect Immun ; 92(7): e0007724, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38869295

RESUMO

The interplay between host nutritional immune mechanisms and bacterial nutrient uptake systems has a major impact on the disease outcome. The host immune factor calprotectin (CP) limits the availability of essential transition metals, such as manganese (Mn) and zinc (Zn), to control the growth of invading pathogens. We previously demonstrated that the competition between CP and the human pathogen group A streptococcus (GAS) for Zn impacts GAS pathogenesis. However, the contribution of Mn sequestration by CP in GAS infection control and the role of GAS Mn acquisition systems in overcoming host-imposed Mn limitation remain unknown. Using a combination of in vitro and in vivo studies, we show that GAS-encoded mtsABC is a Mn uptake system that aids bacterial evasion of CP-imposed Mn scarcity and promotes GAS virulence. Mn deficiency caused by either the inactivation of mtsC or CP also impaired the protective function of GAS-encoded Mn-dependent superoxide dismutase. Our ex vivo studies using human saliva show that saliva is a Mn-scant body fluid, and Mn acquisition by MtsABC is critical for GAS survival in human saliva. Finally, animal infection studies using wild-type (WT) and CP-/- mice showed that MtsABC is critical for GAS virulence in WT mice but dispensable in mice lacking CP, indicating the direct interplay between MtsABC and CP in vivo. Together, our studies elucidate the role of the Mn import system in GAS evasion of host-imposed metal sequestration and underscore the translational potential of MtsABC as a therapeutic or prophylactic target.


Assuntos
Complexo Antígeno L1 Leucocitário , Manganês , Infecções Estreptocócicas , Streptococcus pyogenes , Manganês/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/imunologia , Animais , Humanos , Camundongos , Complexo Antígeno L1 Leucocitário/metabolismo , Virulência , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno/imunologia , Saliva/microbiologia , Saliva/imunologia , Modelos Animais de Doenças
9.
mBio ; 15(7): e0138924, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920392

RESUMO

The host protein calprotectin inhibits the growth of a variety of bacterial pathogens through metal sequestration in a process known as "nutritional immunity." Staphylococcus aureus growth is inhibited by calprotectin in vitro, and calprotectin is localized in vivo to staphylococcal abscesses during infection. However, the staphylococcal adaptations that provide defense against nutritional immunity and the role of metal-responsive regulators are not fully characterized. In this work, we define the transcriptional response of S. aureus and the role of the metal-responsive regulators, Zur, Fur, and MntR, in response to metal limitation by calprotectin exposure. Additionally, we identified genes affecting the fitness of S. aureus during metal limitation through a Transposon sequencing (Tn-seq) approach. Loss of function mutations in clpP, which encodes a proteolytic subunit of the ATP-dependent Clp protease, demonstrate reduced fitness of S. aureus to the presence of calprotectin. ClpP contributes to pathogenesis in vivo in a calprotectin-dependent manner. These studies establish a critical role for ClpP to combat metal limitation by calprotectin and reveal the genes required for S. aureus to outcompete the host for metals. IMPORTANCE: Staphylococcus aureus is a leading cause of skin and soft tissue infections, bloodstream infections, and endocarditis. Antibiotic treatment failures during S. aureus infections are increasingly prevalent, highlighting the need for novel antimicrobial agents. Metal chelator-based therapeutics have tremendous potential as antimicrobials due to the strict requirement for nutrient metals exhibited by bacterial pathogens. The high-affinity transition metal-binding properties of calprotectin represents a potential therapeutic strategy that functions through metal chelation. Our studies provide a foundation to define mechanisms by which S. aureus combats nutritional immunity and may be useful for the development of novel therapeutics to counter the ability of S. aureus to survive in a metal-limited environment.


Assuntos
Complexo Antígeno L1 Leucocitário , Infecções Estafilocócicas , Staphylococcus aureus , Complexo Antígeno L1 Leucocitário/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Infecções Estafilocócicas/microbiologia , Metais/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Regulação Bacteriana da Expressão Gênica , Endopeptidase Clp/metabolismo , Endopeptidase Clp/genética , Camundongos , Adaptação Fisiológica
10.
Elife ; 122024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747577

RESUMO

Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria's ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.


Assuntos
Escherichia coli , Ferro , Lipocalina-2 , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Camundongos , Ferro/metabolismo , Neoplasias/terapia , Neoplasias/imunologia , Enterobactina/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
11.
J Inflamm Res ; 17: 1295-1323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434581

RESUMO

Rhinosinusitis (RS) is an acute (ARS) or chronic (CRS) inflammatory disease of the nasal and paranasal sinus mucosa. CRS is a heterogeneous condition characterized by distinct inflammatory patterns (endotypes) and phenotypes associated with the presence (CRSwNP) or absence (CRSsNP) of nasal polyps. Mucosal barrier and mucociliary clearance dysfunction, inflammatory cell infiltration, mucus hypersecretion, and tissue remodeling are the hallmarks of CRS. However, the underlying factors, their priority, and the mechanisms of inflammatory responses remain unclear. Several hypotheses have been proposed that link CRS etiology and pathogenesis with host (eg, "immune barrier") and exogenous factors (eg, bacterial/fungal pathogens, dysbiotic microbiota/biofilms, or staphylococcal superantigens). The abnormal interplay between these factors is likely central to the pathophysiology of CRS by triggering compensatory immune responses. Here, we discuss the role of the sinonasal microbiota in CRS and its biofilms in the context of mucosal zinc (Zn) deficiency, serving as a possible unifying link between five host and "bacterial" hypotheses of CRS that lead to sinus mucosa remodeling. To date, no clear correlation between sinonasal microbiota and CRS has been established. However, the predominance of Corynebacteria and Staphylococci and their interspecies relationships likely play a vital role in the formation of the CRS-associated microbiota. Zn-mediated "nutritional immunity", exerted via calprotectin, alongside the dysregulation of Zn-dependent cellular processes, could be a crucial microbiota-shaping factor in CRS. Similar to cystic fibrosis (CF), the role of SPLUNC1-mediated regulation of mucus volume and pH in CRS has been considered. We complement the biofilms' "mechanistic" and "mucin" hypotheses behind CRS pathogenesis with the "structural" one - associated with bacterial "corncob" structures. Finally, microbiota restoration approaches for CRS prevention and treatment are reviewed, including pre- and probiotics, as well as Nasal Microbiota Transplantation (NMT).

12.
J Bacteriol ; 206(6): e0044423, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506530

RESUMO

Cellular life relies on enzymes that require metals, which must be acquired from extracellular sources. Bacteria utilize surface and secreted proteins to acquire such valuable nutrients from their environment. These include the cargo proteins of the type eleven secretion system (T11SS), which have been connected to host specificity, metal homeostasis, and nutritional immunity evasion. This Sec-dependent, Gram-negative secretion system is encoded by organisms throughout the phylum Proteobacteria, including human pathogens Neisseria meningitidis, Proteus mirabilis, Acinetobacter baumannii, and Haemophilus influenzae. Experimentally verified T11SS-dependent cargo include transferrin-binding protein B (TbpB), the hemophilin homologs heme receptor protein C (HrpC), hemophilin A (HphA), the immune evasion protein factor-H binding protein (fHbp), and the host symbiosis factor nematode intestinal localization protein C (NilC). Here, we examined the specificity of T11SS systems for their cognate cargo proteins using taxonomically distributed homolog pairs of T11SS and hemophilin cargo and explored the ligand binding ability of those hemophilin cargo homologs. In vivo expression in Escherichia coli of hemophilin homologs revealed that each is secreted in a specific manner by its cognate T11SS protein. Sequence analysis and structural modeling suggest that all hemophilin homologs share an N-terminal ligand-binding domain with the same topology as the ligand-binding domains of the Haemophilus haemolyticus heme binding protein (Hpl) and HphA. We term this signature feature of this group of proteins the hemophilin ligand-binding domain. Network analysis of hemophilin homologs revealed five subclusters and representatives from four of these showed variable heme-binding activities, which, combined with sequence-structure variation, suggests that hemophilins are diversifying in function.IMPORTANCEThe secreted protein hemophilin and its homologs contribute to the survival of several bacterial symbionts within their respective host environments. Here, we compared taxonomically diverse hemophilin homologs and their paired Type 11 secretion systems (T11SS) to determine if heme binding and T11SS secretion are conserved characteristics of this family. We establish the existence of divergent hemophilin sub-families and describe structural features that contribute to distinct ligand-binding behaviors. Furthermore, we demonstrate that T11SS are specific for their cognate hemophilin family cargo proteins. Our work establishes that hemophilin homolog-T11SS pairs are diverging from each other, potentially evolving into novel ligand acquisition systems that provide competitive benefits in host niches.


Assuntos
Proteínas de Bactérias , Heme , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Heme/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Hemeproteínas/metabolismo , Hemeproteínas/genética , Hemeproteínas/química , Ligação Proteica , Proteobactérias/metabolismo , Proteobactérias/genética
13.
mSphere ; 9(3): e0000624, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38380941

RESUMO

Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE: The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Haemophilus , Humanos , Heme/metabolismo , Pulmão/microbiologia , Ferro
14.
J Fungi (Basel) ; 10(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392790

RESUMO

The survival of pathogenic fungi in the host after invasion depends on their ability to obtain nutrients, which include the transition metal zinc. This essential micronutrient is required to maintain the structure and function of various proteins and, therefore, plays a critical role in various biological processes. The host's nutritional immunity limits the availability of zinc to pathogenic fungi mainly by the action of calprotectin, a component of neutrophil extracellular traps. Here we investigated the adaptive responses of Fonsecaea pedrosoi to zinc-limiting conditions. This black fungus is the main etiological agent of chromoblastomycosis, a chronic neglected tropical disease that affects subcutaneous tissues. Following exposure to a zinc-limited environment, F. pedrosoi induces a high-affinity zinc uptake machinery, composed of zinc transporters and the zincophore Pra1. A proteomic approach was used to define proteins regulated by zinc deprivation. Cell wall remodeling, changes in neutral lipids homeostasis, and activation of the antioxidant system were the main strategies for survival in the hostile environment. Furthermore, the downregulation of enzymes required for sulfate assimilation was evident. Together, the adaptive responses allow fungal growth and development and reveals molecules that may be related to fungal persistence in the host.

15.
Angew Chem Int Ed Engl ; 63(14): e202319690, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320965

RESUMO

Given the scarcity of novel antibiotics, the eradication of bacterial biofilm infections poses formidable challenges. Upon bacterial infection, the host restricts Fe ions, which are crucial for bacterial growth and maintenance. Having coevolved with the host, bacteria developed adaptive pathways like the hemin-uptake system to avoid iron deficiency. Inspired by this, we propose a novel strategy, termed iron nutritional immunity therapy (INIT), utilizing Ga-CT@P nanocomposites constructed with gallium, copper-doped tetrakis (4-carboxyphenyl) porphyrin (TCPP) metal-organic framework, and polyamine-amine polymer dots, to target bacterial iron intakes and starve them. Owing to the similarity between iron/hemin and gallium/TCPP, gallium-incorporated porphyrin potentially deceives bacteria into uptaking gallium ions and concurrently extracts iron ions from the surrounding bacteria milieu through the porphyrin ring. This strategy orchestrates a "give and take" approach for Ga3+/Fe3+ exchange. Simultaneously, polymer dots can impede bacterial iron metabolism and serve as real-time fluorescent iron-sensing probes to continuously monitor dynamic iron restriction status. INIT based on Ga-CT@P nanocomposites induced long-term iron starvation, which affected iron-sulfur cluster biogenesis and carbohydrate metabolism, ultimately facilitating biofilm eradication and tissue regeneration. Therefore, this study presents an innovative antibacterial strategy from a nutritional perspective that sheds light on refractory bacterial infection treatment and its future clinical application.


Assuntos
Infecções Bacterianas , Gálio , Porfirinas , Humanos , Ferro/metabolismo , Hemina/metabolismo , Bactérias/metabolismo , Antibacterianos/metabolismo , Biofilmes , Gálio/farmacologia , Porfirinas/farmacologia , Porfirinas/metabolismo , Infecções Bacterianas/tratamento farmacológico , Homeostase , Íons/metabolismo , Polímeros/metabolismo
16.
Trends Microbiol ; 32(3): 219-220, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281864

RESUMO

Iron is an essential nutrient for bacterial pathogenesis. In their study, Skaar and colleagues (Pi et al.) discovered and determined the detailed structure of ferrosomes within Clostridioides difficile, the iron-storage organelles that form under iron-limited conditions in anticipation of future iron overload.


Assuntos
Proteínas de Bactérias , Compostos Férricos , Ferro , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Regulação Bacteriana da Expressão Gênica
17.
Infect Immun ; 92(2): e0031823, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38189339

RESUMO

Inflammation has a pronounced impact on the intestinal ecosystem by driving an expansion of facultative anaerobic bacteria at the cost of obligate anaerobic microbiota. This pathogen "blooming" is also a hallmark of enteric Salmonella enterica serovar Typhimurium (S. Tm) infection. Here, we analyzed the contribution of bacterial and host factors to S. Tm "blooming" in a gnotobiotic mouse model for S. Tm-induced enterocolitis. Mice colonized with the Oligo-Mouse-Microbiota (OMM12), a minimal bacterial community, develop fulminant colitis by day 4 after oral infection with wild-type S. Tm but not with an avirulent mutant. Inflammation leads to a pronounced reduction in overall intestinal bacterial loads, distinct microbial community shifts, and pathogen blooming (relative abundance >50%). S. Tm mutants attenuated in inducing gut inflammation generally elicit less pronounced microbiota shifts and reduction in total bacterial loads. In contrast, S. Tm mutants in nitrate respiration, salmochelin production, and ethanolamine utilization induced strong inflammation and S. Tm "blooming." Therefore, individual Salmonella-specific inflammation-fitness factors seem to be of minor importance for competition against this minimal microbiota in the inflamed gut. Finally, we show that antibody-mediated neutrophil depletion normalized gut microbiota loads but not intestinal inflammation or microbiota shifts. This suggests that neutrophils equally reduce pathogen and commensal bacterial loads in the inflamed gut.


Assuntos
Enterocolite , Microbiota , Salmonelose Animal , Camundongos , Animais , Salmonella typhimurium , Sorogrupo , Bactérias , Inflamação , Modelos Animais de Doenças , Vida Livre de Germes , Salmonelose Animal/microbiologia
18.
FEBS J ; 291(4): 744-760, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950580

RESUMO

During the infectious process, pathogenic microorganisms must obtain nutrients from the host in order to survive and proliferate. These nutritional sources include the metallic nutrient copper. Despite its essentiality, copper in large amounts is toxic. Host defense mechanisms use high copper poisoning as a fungicidal strategy to control infection. Transcriptional analyses showed that yeast cultured in the presence of copper or inside macrophages (24 h) had elevated expression of CRP1, a copper efflux pump, suggesting that Histoplasma capsulatum could be exposed to a high copper environment in macrophages during the innate immune stage of infection. Accordingly, macrophages cultured in high copper are more efficient in controlling H. capsulatum growth. Also, silencing of ATP7a, a copper pump that promotes the copper influx in phagosomes, increases fungal survival in macrophages. The rich copper environment faced by the fungus is not dependent on IFN-γ, since fungal CRP1 expression is induced in untreated macrophages. Appropriately, CRP1 knockdown fungal strains are more susceptible to macrophage control than wild-type yeasts. Additionally, CRP1 silencing decreases fungal burden in mice during the phase of innate immune response (4-day postinfection) and CRP1 is required for full virulence in a macrophage cell lines (J774 A.1 and RAW 264.7), as well as primary cells (BMDM). Thus, induction of fungal copper detoxifying genes during innate immunity and the attenuated virulence of CRP1-knockdown yeasts suggest that H. capsulatum is exposed to a copper-rich environment at early infection, but circumvents this condition to establish infection.


Assuntos
Cobre , Histoplasma , Animais , Camundongos , Histoplasma/genética , Cobre/metabolismo , Virulência , Macrófagos/metabolismo , Imunidade Inata
19.
Blood Cells Mol Dis ; 104: 102777, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391347

RESUMO

Iron is an essential nutrient for microbes, plants and animals. Multicellular organisms have evolved multiple strategies to control invading microbes by restricting microbial access to iron. Hypoferremia of inflammation is a rapidly-acting organismal response that prevents the formation of iron species that would be readily accessible to microbes. This review takes an evolutionary perspective to explore the mechanisms and host defense function of hypoferremia of inflammation and its clinical implications.


Assuntos
Hepcidinas , Inflamação , Animais , Ferro
20.
Fungal Biol ; 127(12): 1512-1523, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097325

RESUMO

The survival of living organisms depends on iron, one of the most abundant metals in the Earth's crust. Nevertheless, this micronutrient is poorly available in our aerobic atmosphere as well as inside the mammalian host. This problem is circumvented by the expression of high affinity iron uptake machineries, including the production of siderophores, in pathogenic fungi. Here we demonstrated that F. pedrosoi, the causative agent of the neglected tropical disease chromoblastomycosis, presents gene clusters for siderophore production. In addition, ten putative siderophore transporters were identified. Those genes are upregulated under iron starvation, a condition that induces the secretion of hydroxamates, as revealed by chrome azurol S assays. RP-HPLC and mass spectrometry analysis allowed the identification of ferricrocin as an intra- and extracellular siderophore. F. pedrosoi can grow in different iron sources, including the bacterial ferrioxamine B and the host proteins ferritin, hemoglobin and holotransferrin. Of note, addition of hemoglobin, lactoferrin and holotransferrin to the growth medium of macrophages infected with F. pedrosoi enhanced significantly fungal survival. The ability to produce siderophores in iron limited conditions added to the versatility to utilize different sources of iron are strategies that certainly may contribute to fungal survival inside the host.


Assuntos
Ferro , Sideróforos , Animais , Ferro/metabolismo , Sideróforos/metabolismo , Hemoglobinas , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA